Contents

ECE 271, Design Project

Nicholas Broce, Caden Friesen, Trevor Horine

March 4, 2021

1 Project Description

2 NES Controller Input - Motor and Addressable LED Output

2.1 Clock Divider e e
2.2 NESReader e
2.2.1 NES Counter
2.2.2 Comparator e
2.2.3 Synchronizer e
2.2.4 Countreset
225 Neslatch
2.2.6 Nesclk e
2.2.7 Read e
2.3 Grbcounter e
2.3.1 Colorcounter
24 Ted. . . . o
2.4.1 Counter e
2.4.2 comparator Lo e e e
2.4.3 SYNCTONIZET o v i i e e e e e
2.4.4 countreset L
2.4.5 Twenty Four Bit to Ninety Six Bit
2.4.6 waveoub Lo e e e
3 PS/2 Keyboard Input - Square Wave Audio Output
3.1 Functional Unit 1 - SquareWaveOutput
3.1.1 Individual Block 1 - ClockDividerIMHz
3.1.2 Individual Block 2 - counter8 Lo
3.1.3 Individual Block 3 - comparatorl0,
3.1.4 Individual Block 4 - sync
3.1.5 Individual Block 5 - alternating L.
3.1.6 Individual Block 6 - keyboardInputDecoder
3.1.7 Individual Block 7 - counter12
3.1.8 Individual Block 8 - comparatortwolnputs
3.2 Functional Unit 2 - keyboard press driver
3.2.1 Individual Block 9 - keyboard inner driver.
4 Infrared Receiver Input - Seven Segment Display Output
4.1 Individual Block 1 - Lead Counter
4.2 Individual Block 2 - Lead to Comp
4.3 Individual Block 3 - Lead Comp o
4.4 Individual Block 4 - Enabler DFF 0oL
4.5 Individual Block 5 - Pulse Counter
4.6 Individual Block 6 - Count Thirty Two,
4.7 Individual Block 7 - Compare Thirty Two
4.8 Individual Block 8 - Pulse Reg oo o
4.9 Individual Block 9 - Zero Compare and One Compare
4.10 Individual Block 10 - Result Flopo L.

—_
S © © 000~ W

4.11 Individual Block 11 - The Shifter 36

4.12 Individual Block 12 - Shift Acceptor L oL 36
4.13 Individual Block 13 - Same command, Same Address, and Same Both 37
4.14 Individual Block 14 - Decoder Register 38
4.15 Individual Block 15 - Digzero decode through Digthree encode 38
4.16 Individual Block 16 - Not Equal Outputs 39
SystemVerilog Files 40
A.1 NES Controller Input - Motor and Addressable LED Output 41
A.2 PS/2 Keyboard Input - Square Wave Audio Output 48
A.3 Infrared Receiver Input - Seven Segment Display Output 53
Simulation Files (Do scripts) 56
B.1 NES Controller Input - Motor and Addressable LED Output 56
B.2 PS/2 Keyboard Input - Square Wave Audio Output 59
B.3 Infrared Receiver Input - Seven Segment Display Output 60

1 Project Description

Inputs: The inputs for the entire project are clkb0mhz, reset, nesdata, keyboarddata, clock-
keyboard, resetkeyboard, and irdata. This project is split into three parts with three total input
systems, those being the NES Controller, the PS/2 keyboard, and the IR remote signal, and each
of those systems use the same 50MHz clock signal as a base input. This clock signal is either
used as is or is altered with clock dividers in each of the sub-projects own files. Each of the three
systems also share a common reset signal called reset. Nesdata and keyboard data operate very
similarly to each other. Both are binary signals that are really a long signal of binary digits that
denote a specific button or key depending on the controller inputted. The data going through
the nesdata and keyboarddata inputs are incremented with their specific clock signals off a shift
register inside the inputted system. For nesdata specially this is done when the output neslatch
goes high and it driven by the output nesclk. For the keyboarddata input a similar latch like
signal is handled inside the keyboard press driver and keyboard inner driver as seen in figures
55 and 57. As discussed already the clockkeyboard is a clock cycle coming directly from the PS/2
keyboard. Unlike the other two inputs irdata is not driven by a clock signal but it is still however
a binary signal that is constantly changing in a pattern to denote specific infrared signals. The
IRreader block then takes that stream a parses through it as it comes in to ensure it can deliver
the correct outputs for the given input stream.

Outputs: From top to bottom the outputs for this entire project are nesclk, neslatch, outcw,
outcew, leddata, audioout, dig0, digl, dig2, dig3, segl, seg2, seg3, seg4d, segd, segh, seg?, and
seg8. As previously discussed in the inputs section above newlatch and newclk help driver the
inputted data from the NES controller. This is done when neslatch is high and the newclk cycles,
these two in combination allows for nesdata to receive a string of binary data that denotes which
button is pressed. Neslatch goes high periodically to ensure that any button press it captured
properly. Outcw and outccw work very similarly to each other. Together the driver DC motor
that acts as one of the outputs for the overall project. When either go high the DC motor receives
power to turn in either a clockwise direction or a counter clockwise direction depending on which
output goes high. Due to controller limitations it is not possible for both to go high at the same
time. Leddata acts as another waveform binary signal to demote specific output colors. To create
specific colors on the LEDs twenty four bits of data are passed through the output leddata at
specific timing frequencies. Similarly to leddata audioout is a waveform created with 1’s and 0’s
at specific frequencies to give an audio device musical notes based on the key pressed on the PS/2
keyboard. Dig0O through dig3 are collections of 7 LEDs built into the FPGA that make up the
7-segment display units. Depending on the inputs given different LEDs are lit up to showcase
the address and command code of the IR signal provided. Segl through seg 8 are more LEDs on
the 7-segment display units that are used for error checking. When something goes wrong or an
incorrect IR signal is taken through the irdata input, two of the 7-segment displays at the left end
light with with a NE for "not equal".

The design is shown at figure 1 on the following page.

J haeine poriDP
< ; | (K |Pmn. o
€% - : FL. LI P wesel e ne
“lﬂ FM\ H. LCM;» 3& Lﬁfﬂf ~§.Wl\>\.«r NS _ DTN\&) na ‘)x’ 3:l84
- ULCO | 1ronby Ok oLt [N Wk
e | . OS\N\E - Of%ﬁh& N. CW
Uk6Omha c/«50 leddke. leetdete [P0, V5
T C
resed o+ K&ro%fﬂé 4 weldaye
— ’ | ol Suitch Ao Doy —Gudnat [P ReT]
[oTnAn2 %C% A xhdrofh Defe
@Ci)& »&r.ﬁ\ﬁnl%(a\ﬁ\ Qgiﬁﬁu¢on~ax
(om0 AR g\:maga ?ﬁ.\?d?uk\
TRpeceler 2o .
— Y$+ I ggd.) A0Lb.6] o i\ 0 - 15/¢15 /¢
5 [P irdada i %W,F S\ o o [PN-og (g (€19 /ele AT AR /B3
M LIS Lok %%? oy Y (g [PN-870/A20/314 /A1) £21)22 /822
= cleg3le-0) T -gr e [PINCF2U g1 /621 (19 /Ct0/D14 (T
J w“‘ 4 E (AN FIe
st S£g2 PIN_T'R
1053 PO HIG
m&; wﬁ‘e Il F1q
%4S S {PRrr0
L Vau\h L
o O

Figure 1

N S

2 NES Controller Input - Motor and Addressable LED Out-

put

This section was implemented with a NES controller, addressable LED, and DC motor. The
wiring diagrams can be found in figure 59 and the video of it in action can be found at the following
link, https://youtu.be/PWSKQtm6lo0. Inputs: This part of the design project reads inputs from
a NES controller and uses a switch and the 50MHz clock from the DE10-Lite FPGA.

Outputs: This module allows the user to control a motor and have it rotate clockwise when
the right button on the d-pad of the NES controller is pressed and counter clockwise when the left
button of the controller is pressed. In addition the addressable LED’s RGB value can be controlled
to a level of 0 to 255 for each color, red, green and blue. In order to increase a colors value hold
that colors button, A for blue, B for red, and START for green, and use the up button on the
d-pad. to decrease the color value for a color follow the same process but use the down button
instead. The color values do roll over the top and bottom so the user can go from 0 to 255 by
going down and from 255 to 0 by going up.

|June 2™ 202 |E£CE 278 Desiyn Prjecr | Trever Hodee | Praely
‘_ﬁ. (Em—nl=dF=r=F £2U & 0
i Tr-NIdFea 9 O
X S | @GrnEdIaBsv [° 1 acer
= }u-}{?arl-? 2 P LR
: ;
[F l 2 FE’
~]b It_“ =]a- e I° = ,;;m“
E
yR e 7
% = 5 b o
g 44kl |%
™ =
=Y
&= s = 2T~ é
ol e o = alETE = = s ‘i y £
32d: |Z2e2es FRFERLEP
SIEES g_a:a—:f_t:&a:a SIS
EEEEE E R gﬁg 33
VSIS R Y F 8 2 o=
"=
g) -] ad | § 2
2 fﬂ"’ 2 3 3 |§3§
v S = = =
= Y] b |
= [2 lr S |
G W3] i =
I E g E:‘ E:—:a.aé‘;liggk
= b T % =
SpBE| Epp| B s gpp
|3 3 5 s o 3 %
2 3 3 3 o 2 5 9 x

Figure 2: The top level design for the NES controller to addressable LED and motor.

N R L AR

e e I S I A

Figure 3: The top level simulation for the NES controller to addressable LED and motor.

2.1 Clock Divider

Inputs: This block takes in a clock signal, 50MHz clock was used in the is project but this block
will work with any. This block also has a active high reset. In addition this block has a parameter
N.

Outputs: This block counts positive edges of the input clock until the counter matches the
parameter N, then toggles the output clock. parameters N = 15, 100000, and 625000 are used in
this sections of the project to obtain 3.3MHz, 5KHz, and 80Hz output clock signals respectively.

CIEda
st | =l Teer c I

| Fereer g) |

Figure 4: This is an block diagram for the clock divider.

Figure 5: This is an block diagram for the clock divider.

2.2 NES Reader

Inputs: This block takes in a clock signal, 5KHz clock was used in the is project, data from the
NES controller, and a active high reset.

Outputs: This block reads the serial data pin from the NES controller and outputs all the
buttons separately. This block also uses the input clock to drive the NES clock and latch pin. The
NES latch pin tells the controller to load the current state of the buttons in to the controllers shift
register, and NES clock shifts the bits out of the shift register through the NES data pin.

N& iader)
1€ cowter Lnc
e ek el |
5| fge (udrd (ount (4] el 4L o Creset
gtz | d e
fegater | dutn Bt | (ight
resed rete) Bottew (0] | (el
| gl bt | fo
Stted korgbrreet dote. | Rotia(7:0] Butfostd] | ug
1o | ast | fst : e Bt]
Ruflorr[2] | Sled
Bufters (1) o
Butlonfe) | o
(rortl) oy peht pesche
Tefla4Ch
(o {4'6) Lot pafuit 1% bl

Figure 6: This is an block diagram for the NES reader.

5
L
L
L
L
L
L
L

Figure 7: This is the simulation for the NES reader.

2.2.1 NES Counter

The individual block shown in figure 8 uses the input clock, this project a 5 KHz clock was used,
to create a count that will be used to control the timing of thing with in the NES reader block.

Inputs: This block has two inputs, the 5KHz clock signal used in the NES reader and the active
high reset signal used with the NES reader.

Outputs: This block has one output called count, a 5 bit signal that counts up and is used in
the timing of the NES reader block.

Ve, Commnder

s [B

Tzt &nq@ﬂ

Figure 8: This block is a simple counter that counts up and is used in timing of the NES reader
block.

oy yyyyyyyyyyyyyyyyyuyyyy

Figure 9: This is the simulation for a simple counter that counts up and is used in timing of the
NES reader block.

2.2.2 Comparator

The individual block shown in figure 10 has one input,one output, and two parameters, N the
number of bits in count and M the number count is being compared to.

Inputs: The input is the count from the counter in the nescounter block.

Outputs: The output is one if the input is greater then or equal to the second parameter M,
and zero if it is not.

T ek

God E3et
Flourcar e et 04

Figure 10: This block is a simple greater then or equal to comparator for the count from the
nescounter block.

RN T RN N N TN TN TR R D D N T T

l mmi

Figure 11: This is the simulation for a simple greater then or equal to comparator for the count
from the nescounter block.

2.2.3 Synchronizer

The individual block shown in figure 12 has two input the 5KHz clock and the output from the
compartator. The output is a synchronized signal used as a reset for the counter.

Inputs: The inputs are the 5KHz clock and the output from the comparator block used to tell
if the counter has reached a certain number.

Outputs: The output a synchronized signal that is used to reset the counter at the desired
values that was specified by the M parameter in the comaprator.

5 ¥ne

ETE
CrLat SRS

Figure 12: This block is a simple syncronizer used in the reset of the counter.

Figure 13: This is the simulation for a simple syncronizer used in the reset of the counter.

2.2.4 Countreset

The individual block shown in figure 14 has two input and the one output, this block is essen-
tially an OR gate.

Inputs: The inputs are the reset signal that is an input for the nesreader block and the output
of the syncronizer.

Outputs: The output is a reset signal that is high where either input is high so the counter
resets when the overall project reset is high or when it reaches its desired maximum set in the
comaprator.

W3 oo Pt
e
T T

Figure 14: This block is simpily an OR gate used to reset the counter.

Figure 15: This is the simulation for countreset which is effectively an OR gate used to reset the
counter.

2.2.5 Neslatch

The individual block shown in figure 16 has one input, count and one output neslatch. This
block controls the latch signal that goes to the NES controller to load the data for the buttons in
to the shift register in the controller.

Inputs: The input for this block is the 5 bit count from the nescounter.

Outputs: The output is a single bit latch signal that goes high to load data in to the shift
register on the controller.

nef kc-ich

T T

Figure 16: This block uses the counter for timing and outputs a high signal during certain sections
of the count to load data in to the shift register of the controller.

Figure 17: This is the simulation for neslatch module.

2.2.6 Nesclk

The individual block shown in figure 18 has one input, count and one output nesclk. This block
controls the clock signal that goes to the NES controller to shift the data for the buttons out of
the shift register in the controller.

Inputs: The input for this block is the 5 bit count from the nescounter.

Outputs: The output is a single bit clock signal that goes high to shift data out through the
data pin on the controller.

s K 1

wﬁ‘m negoTE,

Figure 18: This block uses the counter for timing and outputs a high signal during certain sections
of the count to shift data out though the the data pin of the controller.

Sy G S S Sy S S S s s

Figure 19: This is the simulation for nesclk module.

2.2.7 Read

The individual block shown in figure 20 has three inputs, data, reset, and count. This block
also has one output that is a bus containing all the information for the buttons that gets broken
up to the various outputs of the nesreader.

Inputs: The inputs for this block is the 5 bit count from the nescounter, the data from the
controller, and the overall project reset.

Outputs: The output is a eight bit signal that has the state of each button in a different bit.
The out put is then split in to each of the eight output of nesreader for the different buttons.

10

IR

) (f b, Seicct Stast, uf doun,
H[Ha] 14t i -t_}j

Figure 20: This block uses the counter for timing, and the data from the controller to output the
state of each button.

LA EINDDOEINNIDIORIBOMINE

[] | | 1 1 | I

Figure 21: This is the simulation for the read module.

2.3 Grbcounter

Inputs: This block takes in a clock signal, active high reset, up button, down button, and a
button for each color red, green, and blue. When the up button and a color button are pressed at
the same time that colors value from 0 to 255 is increased, when down and that colors button is
pressed the value is decreased.

Outputs: the out put of this block is a 24 bit signal that contains the 0 to 255 value for green

in the first eight bits, the value for red in the next eight bits, and the value for blue in the last
eight bits.

11

L SO o Gk Gyt
dhonat? | deoewry
i | ol
St | g oy
= Pk e
(ot et
P g
e]
el Bartn | cos oo brertee
e cdle
resex ~Eet
| Cope TP
Shw | aroderbeticn e
uﬁ’ ‘ﬂkl-“-'_'?ﬁn-r-—'ﬂ-'
_doer? e
Somox barton | ccsbon lnvatteny
clE cale
TGy =
e F75) g 3T b Vo P R T
—_—
o | pCoterduerion EFo
&
gt Lo
e ey
btiom, | cionr b s
vod | Rl |
7 et =gt
Lo el
s

Figure 22: This is an block diagram for the grbcounter block.

Figure 23: This is the simulation for the grbcounter block.

2.3.1 Colorcounter

The individual block shown in figure ?? has five inputs, a clock signal, a active high reset, an
up, a down, and a button signal. This block also has one output that is a eight bit bus containing
the count of the counter for that color.

Inputs: The inputs for this block are the 80Hz clock signal provided to the grbcounter block,
the active high reset of the overall project, a signal from the up button on the controller, a signal
from the down button on the controller, and a signal from the button assigned to represent that
color on the controller.

Outputs: The output is a eight bit signal that contains the count of the counter that represents
the value of that color on a scale from 0 to 255.

12

COREr CEmu
ey
dowri
[pnidr
) 3 1
reiet g—_—
L]

block.

Figure 25: This is the simulation for the counter module.

2.4 Led

Inputs: This block takes in a clock signal, 3.3MHz clock was used in the is project, a 24 bit rgb
color values and, a active high reset.

Outputs: This block takes in the 24 bit rgb color value and converts it to as single bit serial
output to go to an RGB addressable LED, the LED reads a 0 as high for .3 microseconds followed by
low for .9 microseconds and reads a 1 as high for .6 microseconds followed by low for .6 microseconds.

13

de | gk led
Jot | st
b2 il
S
(it il
J__i; 7 r— ot o fee
a9 R
= . Togf |[1%
ot:0) ¥ —d | 5t
b 2)i0) Lo | e
o | oo gt
It |ty Lio) _ Lcounde] Wonon | bste-d Waigou
leduhe] JM‘W&J
(4582 an

Figure 26: This is an block diagram for the LED block.

UL

Figure 27: This is the simulation for the led block.

2.4.1 Counter

The individual block shown in figure 28 has two inputs, a clock signal and a active high reset.
This block also has one output that is a nine bit bus containing the count of the counter.
Inputs: The inputs for this block are the 3.3MHz clock signal provided to the led block, and

the active high reset of the overall project.
Outputs: The output is a nine bit signal that contains the count of the counter that is used for

timing in the led block.

14

P
=l)

Feged

T

Figure 28: This block takes in a clock and reset to output the count used for timing in the led
block.

Figure 29: This is the simulation for the counter module.

2.4.2 comparator

This is the same comparator used in the nes reader, please see section 2.2.2.

2.4.3 syncronizer

This is the same syncronizer used in the nes reader, please see section 2.2.3

2.4.4 countreset

This is the same countreset used in the nes reader, please see section 2.2.4

2.4.5 Twenty Four Bit to Ninety Six Bit

The individual block shown in figure 30 has three inputs, grb a 24 bit signal, read, reset. This
block also has one output that is a 96 bit bus called ledwave and will be used to output the right
serial signal for the addressable LED to know what color is being passed to it.

Inputs: The inputs for this block is the 24 bit values containing the 0 to 255 color values for
green in the first eight bits, the 0 to 255 values for red in the next eight bits, and the 0 to 255
value for blue in the last eight bits. read is a signal that tells the module to grab the grb values
and convert it to the 96 bit signal, and reset is an active high rest.

Outputs: The output is a 96 bit signal that is used to get the right serial output fed to the
led so that it recognizes the string of bit s being passes using the format described in the output
section of the led block.

15

Figure 30: This block converts the 24 bit signal to a 96 bit signal used in the serial output of the
rgb color to the addressable led.

Figure 31: This is the simulation for the tftons module.

2.4.6 waveout

The individual block shown in figure 32 has four inputs, a clock, a reset, count, and ledwave the
96 bit signal. This block also has one output, waveout that is the serial output to the addressable
LED.

Inputs: The clock signal is the 3.3MHz clock passed in to the led module. The reset signal is
the overall project reset, the count is the count from the counter in the larger led module. Lastly
the 96 bit signal is used to output a serial signal that addressable LED will recognize.

Outputs: The output is a single bit serial output called waveout and outputs the rgh color for
the addressable LED to show in a format that the addressable LED can recognize.

[Ty —

i
— | CoundTE) wheoat| 000
|=iu-,-] a1e]

Figure 32: This block uses the counter for timing, and the data from the controller to output the
state of each button.

16

I

N A RO

Figure 33: This is the simulation for the read module.

17

3 PS/2 Keyboard Input - Square Wave Audio Output

Inputs: This reads in a PS/2 Keyboard which inputs it’s data with the Data, ClockKeyboard,
ResetKeyboard, and Clock50MHz inputs. There is also a resetSwitch input for the SquareWave-
Output component that is separate from the ResetKeyboard input.

Outputs: This outputs a Square wave Audio signal that is either a 1 or 0 to create waves as
specified frequencies depending on the keyboard button pressed. Figure 34 details the specific
frequencies programmed into this design. For example, when the C key is pressed the output will
create a sound wave frequency for middle C at 261.23 Hz.

‘.' < 'l od A II\'CQ
Wi, de
K‘-\ric‘l e “(,’\(. Ut u 'i”‘(‘ﬂn W FN/(LJI‘C '\ _,_‘.,(“(_M”‘k(/Ubn‘t«f' L‘)/ ‘1 7z
i \ N . | LoV | i
| W aoee | Z | y 7 (A 910 f
/ oo0l | \ ‘ 4 i §
2 /@\o 02U/ poumt| 7206163 I, L5 |
| o \ '
—_—) V11 oeeo , 70 1] - b ol
by 2%/ 00ls oot | R, 25[ool 575 L "}7 | /o ‘
~ o Mese oy ("((/:_—‘
7 (/ F\C\""”f\ / e 6170 2L _)) l 7
| N - oo 011
' | (oL (0O
“ 1) obee 2.0C / \U?} \/C\.,; ‘
i ,/ o0 (DU ;(O,:C/ polo !l \JK'I \, 70)‘/
\‘ $ - 4) . - S —
* \
| A1 (0ot | p o i
262 H | 275 /o i

|

C 2,)—1/ oo} ol™ i FO,%/ o6l oloo; TR
JS \(,/oom\loo lFO,lL/1\|\0000 k e {_(Z f “%6/0(00 o1(q (1

oI 1108

e —

% (111 0000 | e8H, | ol Llootr 10 broo
22/ ol 010 5Fo,37./0w ot | 97 2| 1 C

JEUFION S| S

Figure 34: The table created to program the different keys on the PS/2 keyboard to match the
given frequencies for those notes. If any other key is pressed the program will treat it as no given
input and will only recognize these specific keys with their given key make and key break codes.

18

Design for Full Keyboard to Square Wave Audio Output Circuit :

fesed
’ —————nseh Spdch Auda()
° : . ﬁ—w-———}C!O(‘((;{V'&J?(ult/r'tSO'-Lf’/U: a7

T Vxl'qé Aceel l_’7 Oj

) S

clock_<0 0“'(5"}3 I

—— PSLDAT Vel f———

4p<1 _ . K—L_,«
M4 9 S \/

rese § [l

Figure 35: This is the top level circuit design for the PS/2 Keyboard to Square Wave Audio portion
of our design. It showcases how the two Functional Units connect to form a bridge between the
keyboard input processing and the sound wave forming process.

Simulation Results for Full Keyboard to Square Wave Audio Output Circuit:
JKeyboardtoSquareWave fresetSwiich
[KeyboardtoSquareWave /Clod50MHz
JKeyboardtoSquareWave Data

JkeyboardtoSquareWave /Clodkeyboard
JKeyboardtoSquareWave Resetkeyboard
« [KeyboardtoSquareWave AudioOutput

Figure 36: This is the simulation results of the PS/2 Keyboard to Square Wave Audio portion of
our design.This showcases the middle C frequency that would be output when the C key is pressed
on the keyboard.

3.1 Functional Unit 1 - SquareWaveOutput

Inputs: The inputs to this block are Clock50MHz, resetSwitch, and eight-bit Keyboard inputs.
These drive the comparators, clock dividers, counters, D Flip-flops, and synchronizes in this circuit.
Outputs: There is only one output and it a binary signal the acts as a square wave audio wave,
alternating on different frequency depending on what eight-bit make code is taken in from a PS/2

keyboard.

19

Expanded Design for the SquareWaveOutput component Circuit :

e S E— Y R) \
- b
« (rodoc ¥ =
Yoyt — — ‘
Koferd | e (7 0) Kespwod Topnt A e
g T ot — o | Llok |
L £ : L%T}ﬁm 1 IAOQ;LJ
e MRS it v 1
| d |
I

} B mi
D-F
D-

,4;,1

Figure 37: This is the expanded view of the portion shown in the full circuit schematic shown in
figure 35 to showcase the processing of the square waves formed by the 8-bit keyboard input.

Simulation Results for Full Keyboard to Square Wave Audio Output Circuit:
£ [squareWaveOutput/resetSwitch
£ fsquareWaveOutput/ClockS0MHz

£ /SquareWaveOutput/Keyboard
4. [SquareWaveOutput/audioOuput

Figure 38: This figure shows the ModelSim results with the C key keyboard make code given. The
audio output is outputting at the correct frequency for the musical note C.

3.1.1 Individual Block 1 - ClockDivider1MHz

Inputs: The inputs for this block are Clock50MHz and a resetBut. Clock50MHz is the FPGA
standard 50MHz frequency input and the resetBut is a active high signal to reset the counter and
testing blocks that have flip-flops built into their designs as shown later in figure 41 and figure 47
respectively.

Outputs: The output is a clock signal of 1IMHz as shown by the named output ClocklMHz.
This allows the rest of the circuit to operate with the correct timing.

20

Expanded Design for the ClockDividerlIMHZ Circuit :

D4 L J (2 N, Up'é __'((/('_— SRS
Pla: " SOMU~
L e - - g wiC
__ |k
(OLnss 2 Dy ““f’;’q‘_),,ﬂ —{ el o L
freswtbut o —— ik covpf ol 2 eq r ' flnoact
—— ‘\ \)‘"
) S P
4 ‘ % —
: — e ——— e -
- | 4esdiae
¢ 4 J
t ook C{GCILM’”Z_
el . € A e

Figure 39: This is the expanded view of a block shown in figure 37. This is a key part of the audio
portion of this circuit.

Simulation Results for the ClockDividerlIMHZ Circuit :
£ jdockDivider IMHz/resetBut St

£ [dockDivider IMHz/ClockS0MHzZ St1
4., [dockDivider IMHz/Clock IMHz

Figure 40: This is a simulation showcasing the slowed down clock cycle outputted compared to the
fast clock cycle inputted.

3.1.2 Individual Block 2 - counter8

Inputs: This block takes in a clock cycles called clk, and a binary reset signal to initialize the
counter.

Outputs: The output is a eight-bit binary output that increments by one every clock cycle. It
begins at 0 until the first positive edge of the clk input.

Block Diagram Design for a basic 8-bit counter

{ (:M;)H'f ,g,,,_‘~ .
,_.t[-f..o} ooy S
sk '1 ’

Figure 41: This is a 8-bit counter that takes in a clock cycle to increase the output q by one every
clock cycle.

21

Simulation Results for a basic 8-bit counter

4 Jjoounterd/dk
£ [oounterd reset

B joounters/q (J1 2 ¥3 ¥4 I5 Y6 {7 {8 {9]

Figure 42: The simulation results showcase the incremental nature of this counter, increasing the
output amount by one for every clock cycle of the input clock.

3.1.3 Individual Block 3 - comparator10

Inputs: This block takes in a eight-bit binary value and compares it to a parameter binary
value. In this case that parameter is the decimal number 10.

Outputs: The output to this block is a binary signal, 1 if the incoming eight-bit value is equal
to the parameter value and 0 if otherwise.

Block Diagram Design for a comparator with the parameter value of 10.

oM A,‘*’\(\:\‘
{
\

/ :0\[‘1 0]

Figure 43: This comparator takes in a value tests it to see if it is equal to a built in parameter to
send out a binary signal.

Simulation Results for a 8-bit comparator with the parameter value of 10.
B4 jcomparator10/a

4. Jcomparator 10/eq

4, Jcomparator 10/neq

#.. Jcomparator 101t

4, jcomparator 10/1te
. Jcomparator10/gt
4, Jcomparator 10/gte

Figure 44: This simulation result shows no only the equal to operator but no equal to, less than,
less than and equal to, greater than, and greater than and equal to the parameter value.

3.1.4 Individual Block 4 - sync

Inputs: The sync block takes in a clock signal called clk and a binary data value called d.
Outputs: The output to the sync block is the binary data value labeled q which is equivalent to
the inputted data value d but it is only received on the positive edge of the inputted clock signal.

22

Block Diagram Design for a synchonizer block

Sunc

Figure 45: This synchonizer takes in a value d and passes this value onto the output q on the next
positive edge of the clk clock cycle input.

Simulation Results for a synchonizer with a single bit data input and output.

£ Jeync/dk
£ [sync/d

4a fsync/g
4. fsyngfnl

Figure 46: The simulation showcases the input d being changed twice and the delay that comes
from the synchonizer. This delay is intentional and allows for the circuit to operate as expected.

3.1.5 Individual Block 5 - alternating

Inputs: The inputs on this block is a clock signal to drive the two D Flip-flops that are inside
this block called clock and a reset signal called reset that causes the output q to alternate between
1 and 0.

Outputs: The output to this block is a single binary signal that alternates between 1 and 0
starting at 1 based on the reset input signal.

Block Diagram Design for a block called alternating that acts a reset signal based alternate.

_L\i'_ﬁf_’lﬁﬁf‘__\ﬁ. :
(10 (n \/
— (loc q

|
x

AP CZ/ ‘
JOT ek

Figure 47: This testing unit acts as a double set of d-flips to allow for the q signal to alternate
with the reset signal. This plays an important part in the clock divider circuit in figure39.

Simulation Results for the block called alternating.

4 [falternating/dock
4 [alternatingfreset

4, [alternating/q

Figure 48: This result from the simulation shows that the testing unit must first be reset by the
reset signal upon initialization but form them on the reset signal drives the output to alternate.

23

3.1.6 Individual Block 6 - keyboardInputDecoder

Inputs: This block takes in a eight-bit input amount called data. These eight-bits make up the
data portion of the make codes sent by the PS/2 keyboard when keys are pressed.

Outputs: The outputs of this block are a twelve-bit value that goes into a two input comparator
found at figure 53 and a binary reset signal that would go high when a break code is sent. The
twelve-bit value is the binary equivalent to the frequency that the outputted sound should be at
for each of the implemented keys.

Block Diagram Design for the KeyboardInputDecoder block that takes in a input make or break
code from a PS/2 keyboard and turns that into a value to create the correct sound frequency.

\ (T \
K €000t Ly pud ecocsl ot
——y \ it _— (Ov
B (OV“*\\.\’LQ) /
DR (((,l(‘f‘l,}(:i 'L
f ot
l A

Figure 49: This block takes in inputted keyboard make codes and outputs the specific timing
frequency for the implement keys found in 34.

Simulation Results for the KeyboardInputDecoder block.
i< jkeyboardInputDecoder/data 00110100
. jkeyboardInputDecoder fcountValue 1011110401101 T010011111011

4, fkeyboardIinputDecoder freset

Figure 50: This shows the results of two different implemented keyboard make codes to give out
the correct frequencies for those musical notes.

3.1.7 Individual Block 7 - counter12

Inputs: This block takes in a clock cycles called clk, and a binary reset signal to initialize the
counter.

Outputs: The output is a twelve-bit binary output that increments by one every clock cycle.
It begins at 0 until the first positive edge of the clk input.

Block Diagram Design for a basic 12-bit counter

,L/ /l}ilﬂtf{r er.

Figure 51: This is a 12-bit counter that takes in a clock cycle to increase the output q by one every
clock cycle.

24

Simulation Results for a basic 12-bit counter
4 Jeounter12/dk |
4 Jeounter12freset

B4 fcounter12fg ; T 05 1a {5 16 7015 15 |

Figure 52: The simulation results showcase the incremental nature of this counter, increasing the
output amount by one for every clock cycle of the input clock.

3.1.8 Individual Block 8 - comparatortwolnputs

Inputs: This block takes in two twelve-bit binary values, a and b, and compares them to see if
how they equate to one another.

Outputs: The output to this block is a binary signal, 1 if the incoming eight-bit value is equal
to the parameter value and 0 if otherwise.

Block Diagram Design for a comparator with two 12-bit inputs

(é\l"\){'(‘\iw’ “JC)_""‘ Ut be

\ -

t (ol

/\((L! 0 | a

‘s o -
SR PRIy | '

\1

Figure 53: This comparator takes in two values and tests them to see if they are equal to each
other and sends out a binary signal of equality.

Simulation Results for a 12-bit comparator
Jcomparatortwolnputsfa

B-£ /comparatortwolnputs/b
4, Jjcomparatortwolnputsfeq
4, Jcomparatortwolnputs/neq
4., [comparatortwolnputs/it

4. [comparatortwolnputs/lte
4, Jcomparatortwolnputs/gt
4, Jcomparatortwolnputs/gte

Figure 54: This simulation result shows no only the equal to operator but no equal to, less than,
less than and equal to, greater than, and greater than and equal to between the two input values.

3.2 Functional Unit 2 - keyboard press driver

Inputs: The inputs for this Functional Unit are it’s two clock inputs, Clockb0 and PS2 CLK,
a single bit data stream called PS2_ DAT, and a reset signal. The PS2 DAT works by sending
a series of binary 1’s and 0’s to make up an eleven-bit make code, with a starting bit, eight data
bits, a parity bit and a ending bit.

25

Outputs: The outputs of this functional unit are the valid and makeBreak binary signals that
go unused in this version of the project and the eight bit OutCode that makes up the data bits of
the make code from the keyboard.

Credit and Source: This design [1] of and code [2] and the Fundamental Unit and the following
Individual Block come from Professors Scott Hauck and John S. Loomis from the University of
Dayton as well as students Kyle Gagner and Jesse Liston.

Block Diagram Design for the outer layer of the PS/2 Keyboard driver
: Y (. VETS . NS o oy (7 61
K(.&tt‘ el eSO N Ou

1
Ve l2d
Y mele B ra T

Va4
A6

reict (LT

Figure 55: This block diagram shows how the two clocks and a reset signal drive the PS2 DAT
to create the needed make code for Fundamental Unit 1 to work.

Simulation Results for the outer layer of the PS/2 Keyboard driver
£ [keyboard_press_driver/CLOCK_50
4. fkeyboard_press_driverfvalid
4, [keyboard_press_driver/makeBreak
. fkeyboard_press_driver/outCode
£ |keyboard_press_driver/PS2_DAT

£ [keyboard_press_driver/PS2_CLK
£ jkeyboard_press_driverjreset

Figure 56: The simulation shows that once enough time has passed on the PS2 CLK input the
PS2 DAT creates a proper make code and sends it through the eight-bit OutCode.

3.2.1 Individual Block 9 - keyboard inner driver

Inputs: Almost all of the inputs on this inner layer of the keyboard driver are from the outer
layer, with the exception of the read input. The rest come from the outer layer and come form the
either the PS/2 keyboard or the FPGA.

Outputs: The outputs of this block are the scan _ready binary value and the eight-bit scan__code
that goes into the Functional Unit 1 to drive the audio output.

26

Block Diagram Design for the inner layer of the PS/2 Keyboard driver

k{-\‘ﬁ(‘mc(_;mw.r, Aevar

—_— e - ———— - 1

7 . b - 1 i 'd (.
} pocd . € 14 ,('(u\s’((Q(‘s ‘

Mo b
— - ¢ w000 _ .y o\ Sen_fee '«]
Cloc sk claczso Slan-tod1)L 2y
— resel :
flac(

Figure 57: This block deals with the specifics of taking in the proper data from the keyboard data
and turning it into a usable eight-bit scan code.

Simulation Results for the inner layer of the PS/2 Keyboard driver
4 jkeyboard_press_driver/CLOCK_S0
“.. fkeyboard_press_driver fvalid
“. fkeyboard_press_driver jmakeBreak
B“. fkeyboard_press_driver joutCode

£ jfkeyboard_press_driverPS2_DAT
4 jkeyboard_press_driver/PS2_CLK
4 jkeyboard_press_driver reset

Figure 58: Once again this simulation shows that once enough time has passed on the key-
board CLK input the keyboard DAT creates a proper make code and sends it through the
scan__code to create the eight-bit OutCode on the higher level.

27

4 Infrared Receiver Input - Seven Segment Display Output

The infrared reader module is designed to read infrared code from a remote and interpret them
into an address and a command which will be displayed on the seven segment display.

Inputs: This reads in from an infrared receiver module a logic high or low signal. The receiver
takes input from infrared waves and does not require coding to provide input to the FPGA. The
infrared input comes in the form of waves with small pulses where the gaps between the pulses
represent certain signals based on their length. Decoding these gaps is a major part of this module.

Inputs from the built in 50MHz clock and one of the push buttons are also included. The clock
was used to keep track of time, while the push button was used to reset the whole system.

Outputs: The infrared reader outputs through the seven segment display. It uses all seven
segments of digits zero through three and uses eight specific segments on digits four and five.

i 22 AAMEED_teadcon P __
(endteme grestemdia]’

| 0(BE
| az'ht Ze(0 Cem el €

-gmnum:l]
7"5— A [ane) inresd
e it
2. ang coPmiC -
e I shit accersy
" gata[23l

chiftarieste’

shiftamepu
iamfrle]

g s (60 ‘

Ty %
——Do"__—_) ; mc._m‘} {1;" ko 310 VDD EP
2) 5 5 1] Yusy
;Ih‘-”" l"- menis[ile {

_F20
E@),Im” (olig)_seymenes [ut

Figure 59: This is the top level design for the infrared reader. It has three inputs in the top left
leading to the 35 outputs in the bottom right. If this were to be redone it could definitely benefit
from more middle ground modularity. While many modules were made, they were all combined in
SystemVerilog in the top file making a somewhat confusing top level diagram.

4.1 Individual Block 1 - Lead Counter

The individual block shown in figure 60 is the first counter in the infrared reader. Its purpose is
to count a 50MHz clock signal repeatedly. It resets to zero when either the reset button is pressed,
or the infrared input has a rising edge.

Inputs:

clk: The 50MHz onboard clock.

reset: Made of the logical input ((NOT resetbutton) OR IR).

Outputs:

B[21:0]: 22 bit number representing how many clock signals have passed since last reset

28

Clk leadlountfr galu“"t”
fesedboten —— (1K |18 out
. Bae] 75
1

IR

Figure 60: This block is just a simple counter similar to the ones from lab 5. The main difference
however is it only resets on the positive edge of the reset, not any time the reset is one.

8 Jo J10 11 J12 i3 14)35 [

Figure 61: This simulation had to be very zoomed in, but it shows that the lead counter counts in
time with the 50MHz clock and starts over counting when there is a rise in the infrared wave.

4.2 Individual Block 2 - Lead to Comp

The individual block shown in figure 62 is similar to a D flip flop that leads from the lead
counter to the first comparator. It uses the infrared signal’s rising edges to trigger, and it is reset
to zero when the reset button is pressed.

Inputs:

clk: The infrared signal.

reset: Made of the logical input (NOT resetbutton).

data in[21:0]: The 22 bit number from the lead counter.

Outputs:

data out|21:0]: 22 bit number representing how many clock signals have passed since last reset,
now passed through the flip flop.

Lead 13 Coenp 4

TR o
—_—L 2
p bution ; dae} %
(e> tReset '.'l Leadcountfr

ou
@acmtﬂw'—'zz_d . [2:9 Plopml
(7 |R Il]:O]

Figure 62: This block is just essentially a d flip flop. Similar to the lead counter its main difference
is that it only resets on the rising edge of the reset. This will be a recurring theme for most very
simple modules.

Figure 63: This simulation shows that the flip flop does not prematurely pass along the value of
lead counter until there is another rising IR edge at which point it outputs the current lead counter
output and continues doing so.

29

4.3 Individual Block 3 - Lead Comp

The individual block shown in figure 64 is a comparator module that has three inputs and one
output. The comparator is used to check if the input denoted a is in between the two other inputs.
This is done by checking if it is less than or equal to the input denoted greatera, then checking if it
is greater than or equal to the input denoted lessa. If both of these are true then the comparator
outputs a one, otherwise it outputs a zero.

The purpose of this module in the overall design is to check if the counter counted the amount
of time in a lead bit of an infrared signal (around 13.5ms). It looks for a value between 13ms and
14ms.

Inputs:

greatera[21:0]: The hexadecimal number 22’hAAE60 which is equivalent to the number of
50MHz clock signals in 14 ms.

lessa[21:0]: The hexadecimal number 22’h9EB10 which is equivalent to the number of 50MHz
clock signals in 13ms.

a[21:0]: The 22 bit number from the lead counter, passed through the flip flop is used as the
number that will be compared to the range expected for a lead signal.

Outputs:

In range: This one bit number signifies whether or not the input a was in between the other
two inputs.

zf“ﬁ“'ﬁw Lead Comp mﬁ
—F—gruier o Tnrany

et ofano] \

R
Al
ey e B

Figure 64: This block is a comparator which outputs a 1 if lessa < a < greatera.

[Rreader fresetbutton
[Rreader fir
[Rreader/ck
[IRreader areaterthanlead

[Rreader lessthanlead
[IRreader fleadconfirm
[IRreader dffieadtimed

Figure 65: The lead comparator can be shown triggering the confirm for the lead signal once it
ends and is fed the count from the lead counter.

4.4 Individual Block 4 - Enabler DFF

The individual block shown in figure 66 is similar to a D flip flop and is used to enable the rest
of the system. It uses a clock signal that is the same as its data input. This causes it to output
one once the data reaches a one, but does not reset back to zero unless the reset button is pressed
once it has been enabled. This block receives its data from the lead comparator and enables the
rest of the system once the comparator has confirmed the detection of a lead signal. This is also
used as an overall system reset. When this outputs a one for the first time it resets all the future
blocks in the system to zero.

Inputs:

clk: Data from lead comparator representing the detection of a lead signal.

reset: Made of the logical input (NOT resetbutton).

D: Data from lead comparator representing the detection of a lead signal.

30

Outputs:
Q: Used as an enabler signal for the rest of the system as well as the system reset. Is equivalent
to D on the last rising edge of the clock input.

1 Evabler DFF
@"f‘f b
b | Ensbler

a o

, CL¥

leses
pattor 10— Ceser

Figure 66: This block is unique from a typical D flip flop for two reasons. The Enabler DFF block
uses its data input as its clock signal as well. Similar to previous blocks, it also only resets on the
rising edge of the reset, not when the reset changes back to zero.

Figure 67: Once the lead signal is detected and lead confirmed is raised, enabler out is raised to
one and remains there regardless of changes in lead confirm.

4.5 Individual Block 5 - Pulse Counter

The individual block shown in figure 68 is a counter module used to keep track of how long has
passed between rising edges of the infrared pulse signals. It uses the 50MHz clock to increment
while it receives its reset from the rising edge of the infrared signal.

Inputs:

clk: The 50MHz clock used to increment the counter.

reset: Made of the logical input (IR AND enablerout). This is done so that the reset happens
on the rising edge of IR but only once the enabler has been triggered.

Outputs:

B[21:0]: 22 bit number representing how many clock signals have passed since last reset.

Pulse Counter
“Eax pusesonsy

a8l Bfll - D] A

e et

Ie

Figure 68: This counter keeps track of the time between rising edges of the infrared pulse. Similar
to past blocks it only resets on the rising edge of its reset. This is used as the main input for
finding out whether the infrared pulse represents a one or zero.

31

/TRreader ftimedpulse 0000000000000000010011

Figure 69: The simulation of the pulse counter must be highly zoomed in. It is shown however that
is properly triggers on every 50MHz signal keeping up with the amount of time that has passed.

4.6 Individual Block 6 - Count Thirty Two

The individual block shown in figure 70 is a counter with the purpose of tracking how many
infrared signal rises have gone through the system so far. It is made to count up to thirtytwo which
is the number of bits expected in an infrared signal. This counters input to the system is used to
determine when to do the finishing movements with the fully collected data. Inputs:

clk: The rising edge of the infrared signal is used to increment this clock.

reset: Enablerout resets this counter when it first reaches one.

Outputs:

BJ[5:0]: This five bit number represents the amount of infrared signal pulses so far.

Qouni 1“\(‘)-3'11»0
TR —CL% 72 countout
A, 6i5’:ol .._.__,(_..—6
Enal | Reser

Figure 70: This counter uses a 6 bit output that informs the system on how many infrared pulses
have passed so far. It is only reset when enablerout hits one at a rising edge.

Figure 71: The counter does count each signal at the right time and it does end at 34 which is
where it should end due to the lead pulse and ending pulse.

4.7 Individual Block 7 - Compare Thirty Two

The individual block shown in figure 72 is a comparator with the purpose of checking if the
Count Thirty Two counter has exceeded thirty two pulses yet. The comparator outputs a one as
long as the counted pulses is under thirty two.

Inputs:

a[5:0]: This is the output of the Count Thirty Two counter and can be up to 63 since it is a six
bit binary number.

greatera[5:0]: One of the numbers the comparator uses for comparisons. The comparator checks
if the input is less than or equal to this input of 6’h21 which is equivalent to 33 since in this system
the counter actually reaches 34 once all the processing has been done.

lessa[5:0]: One of the numbers the comparator uses for comparisons. The comparator checks if
the input is greater than or equal to this input of 6’h00 which is equivalent to zero. This is mainly
a placeholder number for the comparator to use the same module as the rest of the system.

Outputs:

32

In Range: This one bit signal is a one if 32 pulse signals have not yet passed and is a zero if
they have.

p [e T
32@'*":‘.“'_,;5__.(1[5; 0 " e ——
b t less o

b'h00

Figure 72: This comparator controls the late phase pieces of the system, telling registers when all
the data should be present for decoding.

|
|

RIS IS IR PSS ER D el H)I:%
[IRreader zero ;

[
N T

Figure 73: The simulation properly stays at one until the counted pulses rises above 32 at which
point it drops to zero.

4.8 Individual Block 8 - Pulse Reg

The individual block shown in figure 74 is a 22 bit register designed to pass along the data
from the pulse counter representing how long the most recent infrared pulse was. It is enabled by
the enabler DFF and is also reset to zero when the enabler DFF originally detects lead code. It
passes this data along to comparators for decoding into a one or zero.

Inputs:

clk: The clock signal driving this register is the rising edge of the infrared pulse.

data in[21:0]: This is the output of the pulse counter as a 22 bit binary number. It represents
the amount of time since the last rising edge of the infrared pulse.

reset: This input resets the pulse reg to zero on the rising edge of the enabler output.

enabled: This input is composed of the logical connection (thirtytwocompared AND IR), and
allows the pulse reg to accept more inputs. This is limited to make sure that both the lead code
has been seen, and the number of infrared pulses has been less than or equal to 32.

Outputs:

Data Out[21:0]: This 22 bit signal is the amount of time tracked by pulse counter as it is
prepared to pass along to the next comparators. It will always represent the last completed
infrared pulse.

58 el Pul
e oz p“ S pﬁ
. Iﬁ—r"*—'bn‘_km[n-.g] -
- 2D —tenavied datn
J.k-nll'ﬂ our = e
ofalelw—t feser [21:0] rey
IR CLK et

Figure 74: This register is composed of 22 enabled D flip flops and passes along the data from
Pulse Counter to a set of comparators.

33

0000000111001111010000
DODODDTIOTIONTIONTION0N 000001101[101

Figure 75: The pulse register appears to only output on some infrared clock signals. This is because
when a one or a zero is measured multiple times in a row the output value is the same amount of
time so the output does not change.

4.9 Individual Block 9 - Zero Compare and One Compare

The individual blocks shown in figure 76 are two comparators that work essentially the same
way. They both take in the data output of the pulse register and compare it with their own base
inputs. Zero compare tests to see if the measured pulse is a zero, while one compare tests to see if
the measured pulse is a one. Both compatators output a one if they detect that the input matches
what they are looking for.

These comparators are referring to the expected time for an infrared pulse. For a pulse to be
a one, it is expected to be around 2.0 to 2.5 milliseconds. For a pulse to be a zero, it is expected
to be around .875 to 1.375 milliseconds.

Inputs for compare zero:

a[21:0]: This is the output of the pulse register which comes from the pulse counter. It measures
the last completed infrared signal’s time through a 50Mhz clock signal.

greatera[21:0]: One of the numbers the comparator uses for comparisons. The comparator
checks if the input is less than or equal to this input of 6’h10CBE which is equivalent to 1.375ms
worth of clock cycles.

lessa[5:0]: One of the numbers the comparator uses for comparisons. The comparator checks if
the input is greater than or equal to this input of 6’hAAE6 which is equivalent to .875ms worth of
clock cycles.

Inputs for compare one:

a[21:0]: This is the output of the pulse register which comes from the pulse counter. It measures
the last completed infrared signal’s time through a 50Mhz clock signal.

greatera[21:0]: One of the numbers the comparator uses for comparisons. The comparator
checks if the input is less than or equal to this input of 6’h1E848 which is equivalent to 2.5ms
worth of clock cycles.

lessa[5:0]: One of the numbers the comparator uses for comparisons. The comparator checks if
the input is greater than or equal to this input of 6’h186A0 which is equivalent to 2.0ms worth of
clock cycles.

Outputs:

In Range: This one bit signal is a one if the comparator involved detects the input is in between
its greatera and lessa input, and a zero if it is not.

Lero Compare
h BE 22
71 h10 {’«—-f‘—z'-- qreater a[71:0] zerecompared.
M‘qu A ail“g] :nf&nﬂc RS

22'h M(&F—‘y‘-ﬁ— less a {21 0]

22 |EQU8 52 | One (mparc

e aa Ay ed [akg] ONCLompay &f
Puufﬂiﬂ —t—a ill.‘ 01 in mﬂse

2 2 higbag——{less & 2. 0]

Figure 76: These comparators are designed to decode the time of the last pulse into either a one
or a zero.

34

0000001101101110111010
0
1

Figure 77: Notably the one and zero compare outputs are always the opposite of each other except
at the beginning when there are no inputs. This means values are being properly detected.

4.10 Individual Block 10 - Result Flop

The individual block shown in figure 78 is a D flip flop style module made to pass along the
result decided upon by the comparators. It takes in the input from the comparator that looks for
ones since this will work either way. If the input is a one the comparator will output a one and if
it is a zero it will output a zero. Both comparators are used however in a xor gate to confirm that
one of them did get triggered to make sure the pulse isn’t neither. This flip flop is made to pass
on the result to the shift register for data storage.

Inputs:

clk: The clock signal driving this D flip flop is a made of the logic ((onecompared XOR ze-
rocompared) AND IR). Allowing the flip flop to trigger on the clock signal while only one of the
comparators is outputting a one.

D: The data in comes from the output of the One Compare comparator and is a singular bit
showing whether the last complete pulse was a one or a zero.

reset: This input resets the result flop to zero on the rising edge of the enabler output.

enabled: This input is composed of the logical connection (thirtytwocompared AND IR), and
allows the pulse reg to accept more inputs. This is limited to make sure that both the lead code
has been seen, and the number of infrared pulses has been less than or equal to 32.

Outputs:

Q: This output is the same as the input D at the last rising edge of the clock input. It represents
the data from the last pulse of the infrared signal.

oy Result Flop
enablerovt____| o\ (pcattflopou ¢
= S |
LY S — D
ComFarg

Figure 78: This D flip flop style module is designed to give the decoded infrared pulse information
to the shift register.

Figure 79: In this simulation it is shown sometimes the result flop maintains the same values. This
is because sometimes multiple ones or zeros come in a row so it doesn’t have to change.

35

4.11 Individual Block 11 - The Shifter

The individual block shown in figure 80 is a 32 bit shift register designed to store the 32 bits of
the infrared input. It takes in one bit at a time and shifts them down a chain of 32 bits through
an internal set of D flip flops. It is reset fully to zero when the enabler output is first triggered,
and it is triggered to take in a new input each time the infrared pulse begins.

Inputs:

clk: The clock signal driving this shift register is the rising edge of the infrared signal.

Data in: The data in comes from the output of the result flop and is a singular bit showing
whether the last complete pulse was a one or a zero.

reset: This input resets the entire shift register to zero on the rising edge of the enabler output.

Outputs:

Data Out[31:0]: This is the output of the 32 bits of the infrared signal. It starts off as 32 zeros
with each progressive input being put in the least significant bit and pushing the previous inputs
one bit more significant.

;PR R e 4 52

e
o Dava out |/ shktercut
o IS P
enatlef —{ aeser

Figure 80: This shift register combined of 32 d flip flops chained together is designed to shift the
infrared signal from serial logic to paralell logic.

MRreaderehifiout 10110001010011101000110101110010 0 0 1 1 1 O D 1 0 O 0 8 IO B

Figure 81: While it is hard to show in one picture, the shift register does slowly shift its input
down the line. The final output is shown on the left and is equal to the proper infrared signal.

4.12 Individual Block 12 - Shift Acceptor

The individual block shown in figure 82 is a 32 bit register designed to take the information
from the shift register and test it for errors. The shift acceptor takes in the data from the shift
register when the 32 counter reaches 32 completed infrared pulses. This is done on the negative
edge of the Compare Thirty Two comparator.

Inputs:

clk: The clock signal driving this shift register is the sinking edge of the Thirty Two Comparator.

Data in[31:0]: The data in comes from the output of the shift register and is all 32 parallel bits
of the infrared signal.

reset: This input resets the entire shift register acceptor to zero on the rising edge of the enabler
output.

Outputs:

Data Out[31:0]: This is the output of the 32 bits of the infrared signal. Here it is output to
further logic to verify if it is a real infrared signal.

36

| Sty ACeprer |
tThirty e

Com pajed ’—-{>O—— CLiL Dok OuY
h

312
SHK{‘Q((@P“T
%fe/dth—fsz— Data. in w0l [Jato
nabler (31:0]
out [Recer

Figure 82: This shift acceptor is a simple 32 bit register composed of D flip flops and is designed
to pass along the shift register info once all 32 bits have been collected.

10110001010011101000110101110010
10110001010011101000110101110010

Figure 83: Shift acceptor doesn’t start putting out the shift register’s data until 32 infrared pulses
have passed.

4.13 Individual Block 13 - Same command, Same Address, and Same
Both

The individual block shown in figure 84 is a set of logical connections that result in the logic
output labelled "same both". The goal of this block is to check if the 0-7 and 8-15 bits as well as
the 16-23 and 24-31 bits are truly logical inverses of each other as they should be. This is done
by putting each corresponding bit into a XOR gate and then seeing if all the XOR gates output a
one as they should. If they do same both is declared one. If they do not same both is a zero.

Inputs:

Shift Acceptor[31:0]: The data in comes from the output of the shift acceptor and represents
the 32 parallel bits of the infrared signal.

Outputs:

Same Both: This output is a one if the command and command inverse are truly inverse as
well as if the address and address inverse are truly inverses. Otherwise it is a zero output.

carn€ command, Samé addrw‘, and same both

BEETTLyy
+4 $ Majdrass!
g
8 same foth

Shift ac £ '

[lSa:j-ﬁ b B

A“({' g:tmmrfhni

Shift afcpptor

(703

Figure 84: This set of logic works as built in error handling for the system and will stop the
program later if it fails.

37

L

St1
Elul
St0

10110001010011101000110101110010

Figure 85: Same both only switches to one once both same command and same address have been
met. Looking at the data inputs it can be confirmed that the address and inverse address as well
as the command and inverse command inputs are truly inverse proving this functionality.

4.14 Individual Block 14 - Decoder Register

The individual block shown in figure 86 is another 32 bit register designed to take data from
the shift register. This is done later on once the data has been confirmed to be a real infrared
signal. This register is triggered to take in data on the rising edge of Same Both. This allows it to
take in the data as soon as it has been declared valid. It then outputs this data to the decoders
for output preparation.

Inputs:

Shifter Data[31:0]: The data in comes from the output of the shift register and represents the
32 parallel bits of the infrared signal.

clk: The clock for this block is triggered by the rising edge of the Same Both variable from the
previous logic section.

reset: This input resets the entire decoder register to zero on the rising edge of the enabler
output.

Outputs:

Data Out[31:0]: This output is the data from the shift register being sent to the decoders now
that it is confirmed to be an infrared signal.

72z | Decoder Regisier
(eut | 3
ShifE€re + Dara \n [3\ 0l 32 focuion
sameBoth | o) Dot our 7 "dato
3
ema{ﬁe Reser f31:0]

Figure 86: This register is the final block between the decoders outputting the infrared code and
the shift register.

/IRreader/enablerout
[IRreader resetbutton
[MRreader/ir
[Rreader/dk

IRreader [thirtytwoconfirmed

[IRreader /sameboth

[Rreader /shiftout 10110001010011101000110101110010
[IRreader /decoderinput 10110001010011101000110101110010

Figure 87: This register is triggered as soon as same both switches to one allowing the shift register
data to pass through.

4.15 Individual Block 15 - Digzero decode through Digthree encode

The four individual blocks shown in figure 88 are all decoders with the same purpose. Each one
decodes four bits of data and then outputs signals to the seven segments of a digit on the FPGA.
They are each connected to the digit associated with their number. The internals are built with
a seven segment decoder designed to display the four digit binary input in hexadecimal. Digits

38

three and two display the eight bit address signal while digits one and zero display the eight bit
command signal.

Inputs:

Decoder Data[11:8] -> Digzero

Decoder Data[15:12] -> Digone

Decoder Data|27:24] -> Digtwo

Decoder Data|31:28] -> Digthree

These data inputs are the four bit binary signals that will be transformed to hexadecimal.

Outputs:

All four of these output a 7 bit logic output to the seven segments of their designated digit. A
zero causes the segment to light up while a one causes the segment to stay off.

1

Da:od(’(“hf“q D\'?) Zeto Decod ¢
(18] P [3:0] -7

seqments [, —r~—{PF 0

Pecoderdate,, Dig Ore Decode
i8] 7 (Dot 13:07 3

Seqment [u-o1 |
3]

Deecderdatn y D:S Two Decode
(712417 |Paaiz:0] e

Yl b
Decatrdata Dig Tneee Decode

L3 18_] % i Data {3107 7
, sy g/

Figure 88: The four decoders are largely unchanged from the labs earlier in Digital Logic Design.
It is important to note if the decoder register is reset all of these digits will turn off.

'+« [Rreader[digd

. [Rreader/digl
B-“= /IRreader/dig2
B-“. /Rreader/dig3

Figure 89: The digits stay as all ones until they are enabled. After this they shift to all zeros
before finishing displaying the address and command of the infrared code.

4.16 Individual Block 16 - Not Equal Outputs

The set of logic shown in figure 90 is an error handling section of the infrared reader. This
section is based off of the Thirty Two Compared and the Same Both inputs. Using these the logic
determines whether an error occurred during the process of the decoding. If it did, eight segments
in digits four and five of the display will light up to display the letters NE for not equal.

Inputs:

Thirty Two Compared: This input is inverted and gives out a one if all thirty two bits of
infrared data have been collected.

Same Both: This input is a zero if the command and address were not truly the inverse of their
inverse data.

Outputs:

Segl through Seg8: These outputs represent the letters NE on the fourth and fifth seven segment
display digits. They are turned on if given a zero as the output.

39

©00NO U W

same peth

i€

"

Not Equal 0wt puts A5 5
Sey |~

eq |
32cmmrea__p0_—J_)D—Do——-— %&?

(113

g

camé Com'ﬂﬂhd, sam@ a“fPSSI and Same 60,!.“

Figure 90: This logic checks to make sure that either same both is incorrect (or not given data
yet) and there has not been thirty two inputs, or same both is correct and there has been thirty
two inputs. If the truth is not one of these the logic gates input zeros to the segments from the

seven segment display turning them on and displaying NE.

Figure 91: In the simulation these segments stay as ones since Thirty Two Confirmed and Same
Both always remain opposite of each other. These don’t activate at all until the lead code is
detected.

A SystemVerilog Files

Copyright (C) 2018 TIntel Corporation. All rights reserved

Your use of Intel Corporation’s design tools, logic functions

and other software and tools, and its AMPP partner logic
functions , and any output files from any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject

to the terms and conditions of the Intel Program License
Subscription Agreement, the Intel Quartus Prime License Agreement,
the Intel FPGA IP License Agreement, or other applicable license
agreement , including, without limitation , that your use is for

the sole purpose of programming logic devices manufactured by
Intel and sold by Intel or its authorized distributors. Please
refer to the applicable agreement for further details.

PROGRAM "Quartus Prime"
VERSION "Version 18.0.0 Build 614 04/24/2018 SJ Lite
CREATED "Fri Jun 05 21:05:30 2020"

module designprojectfinal (
clk50mhz ,
reset ,
nesdata ,
keyboarddata ,
clockkeyboard ,
resetkeyboard ,
irdata ,
nesclk ,
neslatch ,
motorcw ,
motorccw ,
leddata ,
audioout ,
segl ,
seg?2 ,
seg3 ,
seg4d .
segh ,
segb ,
seg7 ,
seg8 ,
digo ,
digl ,
dig2 ,
dig3

40

Edition"

47

48 input wire clk50mhz ;

49 input wire reset ;

50 input wire nesdata ;

51 input wire keyboarddata ;
52 input wire clockkeyboard;
53 input wire resetkeyboard;
54 input wire irdata ;

55 output wire nesclk ;

56 output wire neslatch ;

57 output wire motorcw ;

58 output wire motorccw ;

59 output wire leddata ;

60 output wire audioout ;

61 output wire segl ;

62 output wire seg?2
63 output wire seg3;

64 output wire segd;

65 output wire segh

66 output wire segb ;

67 output wire seg7;

68 output wire seg8;

69 output wire [6:0] digO;

70 output wire [6:0] digl;

71 output wire [6:0] dig2;

72 output wire [6:0] dig3;

73

74 wire clk50 ;

75 wire rst;

76

77

78

79

80

81 KeyboardtoSquareWave b2v_Brocel (
82 .resetSwtich (rst) ,

83 . Clock50MHz (cl1k50) ,

84 .KeyboardData (keyboarddata) ,
85 . ClockKeyboard (clockkeyboard) ,
86 _ResetKeyboard (resetkeyboard) ,
87 . AudioOutput (audioout)) ;
88

89

90 IRreader b2v_Friesenl (

91 .resetbutton (rst) ,

92 .ir(irdata) ,

93 .clk (clk50) ,

94 .segl(segl),

95 .seg2(seg2) ,

96 _seg3 (seg3),

97 _segd (segd) ,

98 . segh (segh) ,

99 _segb (segb) ,

100 .seg7 (segT) ,

101 .seg8(seg8) ,

102 .dig0 (dig0) ,

103 .digl(digl) ,

104 .dig2(dig2) ,

105 .dig3(dig3));

106

107

108 horinepartDP b2v _ Horinel (

109 crst(rst),

110 .nesdata (nesdata) ,

111 .clk50mhz (clk50) ,

112 .nesclk (nesclk) ,

113 .neslatch (neslatch) ,

114 .outcw (motorcw) ,

115 .outccw (motorcew) ,

116 .leddata (leddata));

117

118 assign rst — reset;

119 assign clk50 = clk50mhz;

120

121 endmodule

A.1 NES Controller Input - Motor and Addressable LED Output

1 Copyright (C) 2019 Intel Corporation. All rights reserved.

2 Your use of Intel Corporation’s design tools, logic functions

3 and other software and tools, and any partner logic

4 functions , and any output files from any of the foregoing

5 (including device programming or simulation files), and any

6 associated documentation or information are expres subject

7 to the terms and conditions of the Intel Program License

8 Subscription Agreement, the Intel Quartus Prime License Agreement ,
9 the Intel FPGA IP License Agreement, or other applicable license
10 // agreement, including, without limitation , that your use is for
11 / the sole purpose of programming logic devices manufactured by
12 // Intel and sold by Intel or its authorized distributors. Please
13 // refer to the applicable agreement for further details , at

14 / https://fpgasoftware.intel.com/eula.

15

16 // PROGRAM "Quartus Prime"

17 // VERSION "Version 19.1.0 Build 670 09/22/2019 SJ Lite Edition"
18 CREATED "Fri Jun 05 12:05:06 2020"

19 //Trevor Horine

20 //This is the generated verilog for my toplevel file that was built in schmatic view.
21

22 module horinepartDP (

23 clk50mhz |

24 data ,

25 rst

26 up ,

27 down ,

28 left ,

29 right ,

30 start ,

31 select ,

32 a,

33 b,

34 nesl ,

35 datap ,

36 nesclk ,

41

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

neslatch ,

sysclk ,
outcw ,
outccw ,
leddata ,
D1,
D2,
D3,
D4,
D5,
D6
)
input wire clk50mhz ;
input wire data ;
input wire rst;
output wire up ;
output wire dow
output wire left
output wire right ;
output wire start ;
output wire select ;
output wire a;
output wire b
output wire nesl ;
output wire datap ;
output wire nesclk ;
output wire neslatch ;
output wire sysclk;
output wire outcw ;
output wire outccw ;
output wire leddata ;
output wire [6:0] D1;
output wire [6:0] D2;
output wire [6:0] D3;
output wire [6:0] D4;
output wire [6:0] D5;
output wire [6:0] D6;
wire a ALTERA SYNTHESIZED:
wire b_ALTERA_SYNTHESIZED:
wire clk16mhz ;
wire clktispoint3us;
wire countclk ;
wire datapin ;
wire down_ALTERA_SYNTHESIZED ;
wire [23:0] grbvalue;
wire left ALTERA SYNTHESIZED ;
wire neslat ; -
wire right ALTERA SYNTHESIZED:
wire start_ ALTERA _SYNTHESIZED ;
wire up_ALTERA_SYNTHESIZED ;
clkdiv b2v_horinel(
.clk (clk50mhz) ,
.reset (rst),
.newclk (clk16mhz)) ;
defparam b2v_horinel .N = 100000;
sevseg b2v horinelO (
.data(grbvalue[15:12]) ,
-seg(D4));
sevseg b2v _horinell (
.data(grbvalue[19:16]) ,
.seg (D5))
sevseg b2v _ horinel2(
.data(grbvalue[23:20]) ,
.seg (D6)) ;
clkdiv b2v_ horine2(
.clk (clk50mhz) ,
.reset (rst) .,
.newclk (clktispoint3us));
defparam b2v _horine2 .N = 15
clkdiv b2v_horine3 (
.clk (clk50mhz) ,
.reset (rst),
.newclk (countclk)) ;
defparam b2v_horine3.N = 625000;
nes b2v_horined (
.clk (clk16mhz) ,
.reset (rst) ,
.nesdata (datapin) ,
.nesclk (nesclk) ,
.neslatch (neslat) ,
.up (up_ALTERA_ SYNTHESIZED) ,
.down (down ALTERA SYNTHESIZED) ,
.left (left ALTERA SYNTHESIZED) ,
.right (right ALTERA SYNTHESIZED) .
.start (start_ ALTERA SYNTHESIZED) .
.select (select), -
.a(a_ALTERA SYNTHESIZED) ,
.b(b_ALTERA_SYNTHESIZED)) ;
grbcounter b2v_horine5 (

.clk (countcik) ,
.reset (rst),

.gcolorbutton (start ALTERA SYNTHESIZED) ,

.rcolorbutton (b_ALTERA_SYNTHESIZED) ,
.bcolorbutton (a_ALTERA_SYNTHESIZED) ,

42

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

©00NO U AW

13
14
15

16

WO U WN

HO®©ONO U A WN

o

0NO TR WN

.up (up_ALTERA_SYNTHESIZED) ,
.down (down_ ALTERA_SYNTHESIZED) ,
.grbvalue (grbvalue));

led b2v_horine6 (
.reset (rst),
.clk (clktispoint3us) ,
.grb(grbvalue) ,
.ledout (leddata)) ;

sevseg b2v_horine7(
.data(grbvalue[3:0]) ,
-seg (D1));

sevseg b2v_horine8(
.data(grbvalue [7:4]) ,
.seg(D2));

sevseg b2v_horine9 (
.data(grbvalue[11:8]) ,
.seg (D3));

assign up = up_ALTERA_SYNTHESIZED;
assign datapin = data;

assign down = down ALTERA SYNTHESIZED;
assign left = left ALTERA SYNTHESIZED;
assign right — right ALTERA SYNTHESIZED;
assign start — start ALTERA SYNTHESIZED;
assign a a ALTERA SYNTHESIZED;

assign b b_ALTERA_SYNTHESIZED ;

assign nesl neslat ;
assign datap datapin ;
assign neslatch — neslat;
assign sysclk = clkl6mhz;

assign outcw = right ALTERA_SYNTHESIZED;
assign outccw = left ALTERA_ SYNTHESIZED;

endmodule

// Trevor Horine

This is a clock divider that toggels at integer values of the input clock.
module clkdiv #(parameter N = 15) 100000000
(input logic clk ,
input logic reset ,
output logic newclk);
logic [25:0] t;
always ff@ (posedge clk, posedge reset) begin
if (reset) begin
t <= 0:
newclk 0;
end
else if (¢t N)begin
t < 0;
newclk < 'newclk ;
end
else t t o1
end
endmodule
Trevor Horine
This module counts color values between 0 and 255
module colorcount #(parameter N = 8)
(input logic clk,
input logic colorbutton ,
input logic reset ,
input logic u,
input logic d,
output logic[N—1:0] colorvalue);
always ff@(posedge clk, posedge reset)
if (reset)
colorvalue <= 0:
else if (clk & colorbutton & u & ~d) colorvalue
else if (clk & colorbutton & d & “u) colorvalue
else
colorvalue < colorvalue ;
endmodule
Trevor Horine
/This is a greater than or equal to comparator
module comparator #(parameter N 4, M 10)

(input logic [N—1:0] a,
output logic gt);

assign gt = (a >= M)
endmodule

Trevor Horine
//This is a counter
module counter #(parameter N — 4)
(input logic clk ,
input logic reset ,
output logic [N—1:0] q);

always ff@Q(posedge clk, posedge reset)
if (reset) q < 0;
else

endmodule

Trevor Horine
//This modules is practicly an OR gate used for resets
module countreset (input logic reset ,

input logic comparrst,

output logic rst);

assign rst comparrst | reset;
endmodule

43

colorvalue
colorvalue

13
1;

©ON®U A WN

Trevor Horine
This module counts color values for red green and blue and outputs rgb
module grbcounter (input logic clk
input logic reset ,
input logic gcolorbutton ,
input logic rcolorbutton ,
input logic bcolorbutton ,
input logic up,
input logic down,
output logic [23:0] grbvalue);
colorcount horineg (
.clk (clk) ,
.reset (reset),
.colorbutton (rcolorbutton) ,
-u (up),
.d (down) ,
.colorvalue (grbvalue [23:16])
)
colorcount horiner (
.clk (clk) ,
.reset (reset),
.colorbutton (gcolorbutton) ,
‘u (up) ,
.d (down)
.colorvalue (grbvalue [15:8])
)
colorcount horineb (
Lclk (clk),
.reset (reset),
.colorbutton (bcolorbutton) ,
-u (up) ,
.d (down) ,
.colorvalue (grbvalue [7:0])
)
endmodule
Trevor Horine
This module drives an addressable LED
module led (input logic [23:0] grb,
input logic reset ,
input logic clk ,
output logic ledout);
wire [8:0] count;
wire gt ;
wire srst;
wire rst;
wire [95:0] ledwaveout ;
counter # (.N(9)) horine0 (
.clk (clk),
.reset (rst),
.q (count)
)
comparator #(.N(9), .M(363)) horinel (
.a (count),
gt (gt)
)
sync horine2 (
.clk (clk),
.d (gt),
.q (srst)
)
countreset horine3 (
.reset (reset) ,
.comparrst (srst),
.rst (rst)
)
test horine4 (
.grb (grb) ,
.reset (reset),
.read (rst),
.ledwaveout (ledwaveout)
)
waveout horine5 (
.count (count) ,
.clk (clk),
.ledwave (ledwaveout) ,
.reset (rst),
.waveout (ledout)
)
endmodule
Trevor Horine
// This module reads inputs from an NES controller
module nes (
input logic clk,
input logic reset ,
input logic nesdata ,
output logic nesclk ,
output logic mneslatch ,
output logic up,
output logic down,
output logic left ,
output logic right ,
output logic start ,
output logic select ,
output logic a,
output logic b);
wire [4:0] count;
wire gt
wire srst;
wire rst;
nescounter horinel (

44

values

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

©00NOUAWN -

art ,

t)

Celk (clk),
.reset (rst),
.count (count)
)
comparator #(.N(5), .M(19)) horine2(
.a (count) ,
-8t (gt)
)
sync horine3 (
clk (clk),
.d (gt),
.q (srst)
)
countreset horined (
.reset (reset) ,
.comparrst (srst),
Crst (rst)
),
neslatchmod horine5 (
.count (count) ,
.neslatch (neslatch)
)
nesclkmod horine6 (
.count (count) ,
_nesclk (nesclk)
)
read horine7 (
.data (nesdata) ,
.reset (rst) .
.count (count) ,
.buttons ({right , left , down, up, st
)
endmodule
module nescounter (
input logic clk, reset ,
output logic [4:0] count);
always ff @ (posedge clk, posedge reset)
if (reset) count <= 7’'b0;
else count <= count + 1;
endmodule
module neslatchmod (
input logic [4:0] count,
output logic neslatch);
always_comb
case (count)
5’dl: neslatch 17b1;
5’d2: neslatch = 1’bl;
default: neslatch = 1’b0;
endcase
endmodule
module nesclkmod (
input logic [4:0] count,
output logic nesclk);
always _comb
case (count)
5’d4: mnesclk = 1’bl;
5’d6: mnesclk = 1’bl;
5’d8: mnesclk = 1’bl;
5°d10: nesclk = 1’°bl;
57d12: nesclk = 1’bl;
5’d14: nesclk = 1’bl;
57d16: nesclk — 1’bl;
57d18: nesclk 1'bl;
default: nesclk 1’b0;
endcase
endmodule
module read (
input logic data,
input logic reset ,
input logic [4:0]count,
output logic [7:0] buttons);
always_ff @ (posedge count[0], posedge rese
if (reset) buttons <— 8°b0;
else case(count)
5'd3: buttons[0] < ! data;
5'd5: buttons|[1] | data;
5°d7: buttons|[2] | data;
5°d9: buttons[3] ! data:
5°d1l: buttons |4 ! data;
5°d13: buttons|[5 ! data;
5°d15: buttons |6 | data;
5'd17: buttons[7 ! data;
default: buttons < buttons ;
endcase
endmodule
Trevor Horine
/This is a syncronizer
module sync(input logic clk,
input logic d,

output logic q)

logic nl;
always ff@ (posedge
begin nl
q <= nl;
end

endmodule

clk)

45

select ,

up
down
left
right

b,

a})

©ON®U A WN

105
106
107
108
109
110
111
112
113
114
115
116

converted 4

grb
input
input
output

Trevor Horine
This module puts all of the
module test (input logic [23:0]
wire [95:0] ledw;

oneorzero
.colorbit
.ledlogicvalue

)5

horinel (
(grb[23]),
(ledw [95:92])

oneorzero
.colorbit
.ledlogicvalue

)

horine2 (
(grb[22]),
(ledw [91:88])

oneorzero
.colorbit
.ledlogicvalue

)5

horine3 (
(grb[21]),
(ledw [87:84])

oneorzero
.colorbit
.ledlogicvalue

)

horine4 (
(grb[20]),
(ledw [83:80])

oneorzero horine5 (
(grb[19]),

(ledw [79:76])

.colorbit
.ledlogicvalue

) s

horine6 (
(grb[18]),
(ledw [75:72])

oneorzero
.colorbit
.ledlogicvalue

)

oneorzero
_colorbit
.ledlogicvalue

)

horine7 (
(grb[17]),
(ledw [71:68])

oneorzero
.colorbit
.ledlogicvalue

)

horine8 (
(grb[16]),
(ledw [67:64])

oneorzero
.colorbit
.ledlogicvalue

)

horine9 (
(grb[15

1),
(ledw [63

160])

oneorzero
.colorbit
.ledlogicvalue

)

horinelO (
(grb[14])
(ledw [59:56])

oneorzero
.colorbit
.ledlogicvalue

)

horinell (

(grb |
(ledw

),

13]),
[565:52])

oneorzero
.colorbit

.ledlogicvalue

)5

horinel2 (
(grb[12]),
(ledw [51:48])

oneorzero
colorbit
.ledlogicvalue

)

horinel3 (
(grb[11]),
(ledw [47:44])

oneorzero
.colorbit
.ledlogicvalue

)

horinel4 (
(grb[10]),
(ledw [43:40])

oneorzero horinelb5 (

.colorbit (grb[9]) ,
_ledlogicvalue (ledw [39:36])
)

oneorzero horinel6 (

.colorbit (grb [8]) ,
.ledlogicvalue (ledw [35:32])

)5

oneorzero horinelT (

.colorbit (grb [7]),

.ledlogicvalue (ledw [31:28])

)

oneorzero horinel8 (

.colorbit (grb [6]) ,

.ledlogicvalue (ledw [27:24])

)

oneorzero horinel9 (

.colorbit (grb [5]) ,

.ledlogicvalue (ledw [23:20])

)

oneorzero horine20 (

.colorbit (grb[4]) .,

.ledlogicvalue (ledw [19:16])

)

oneorzero horine21 (

.colorbit (grb[3]),
(ledw [15:12])

.ledlogicvalue

)

oneorzero
.colorbit

horine22 (
(grb[2]),

logic
logic
logic

bit

reset ,
read ,
[95:0]

strings

together .

ledwaveout) ;

46

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

© 00O U W

.ledlogicvalue

oneorzero
.colorbit
.ledlogicvalue

)

oneorzero
.colorbit
.ledlogicvalue

)5

(ledw [11:8])

horine23 (

(grb[1]),
(ledw [7:4])

horine24 (

(grb[0]) ,
(ledw [3:0])

getdata horine25 (

.read

.ledw
.reset
.ledwaveout

)

endmodule

(read) ,

(ledw) ,
(reset) ,
(ledwaveout)

module oneorzero (input logic colorbit ,
output logic [3:0]
always comb
case (colorbit)
1’bl: ledlogicvalue = 1100;
1’b0: ledlogicvalue = 1000;
default: ledlogicvalue = 0000;
endcase
endmodule
module getdata (input logic read,
input logic [95:0] ledw,
input logic reset ,
output logic [95:0]
always ff @(negedge read, posedge reset)
if (reset) ledwaveout < 96°b0;
else case(read)
9’b0: ledwaveout <= ledw ;
default: ledwaveout <= 0;
endcase
endmodule
Trevor Horine
/This module takes the 96 bit signal to a serial output
module waveout (input logic [8:0]count,
input logic clk,
input logic [95:0] ledwave
input logic reset .
output logic waveout) ;
always _ff @ (posedge clk, posedge reset)
if (reset) waveout <— 1’b0;
else case(count [8:0])
9°d0: waveout <= ledwave[95];
9’dl: waveout ledwave [94];
9’d2: waveout ledwave [93];
9°d3: waveout ledwave [92];
9°d4: waveout ledwave [91];
9 waveout ledwave [90];
9 waveout [89];
9’ waveout [88];
9 waveout [87];
9’ waveout ledwave [86];
9’ waveout ledwave [85
9 waveout ledwave [84];
9 waveout ledwave [83];
9 waveout ledwave [82];
9 waveout ledwave [81];
9 waveout ledwave [80];
9’ waveout ledwave [79];
9’ waveout ledwave [78
9’ waveout ledwave [77
9’ waveout ledwave [76
9’ waveout ledwave [75];
9 waveout ledwave [74];
9 waveout ledwave [73];
9 waveout ledwave [72];
9 waveout ledwave [71];
9 waveout ledwave [70]:
9 waveout ledwave [69]:
9 waveout ledwave [68];
9’ waveout ledwave [67
9’ waveout ledwave [66
9’ waveout ledwave [65
9’ waveout ledwave [64
9 waveout ledwave [63];
9 waveout ledwave [62];
9 waveout ledwave [61];
9 waveout ledwave [60];
9’d36: waveout ledwave [59];
9°d37: waveout ledwave [58];
9’d38: waveout ledwave [57];
9’d39: waveout ledwave [56
9’d40: waveout ledwave [55
9’d41: waveout ledwave [54
9’d42: waveout ledwave [53
9°d43: waveout ledwave [52];
9’d44: waveout ledwave [51];
9°d45: waveout ledwave [50];
9’d46: waveout ledwave [49];
9°d47: waveout ledwave [48];
9°d48: waveout ledwave [47];
9’d49: waveout ledwave [46
97’d50: waveout ledwave [45
9’d51: waveout ledwave [44
9’d52: waveout ledwave [43
9’d53: waveout ledwave [42];
9’d54: waveout ledwave [41];
9°d55: waveout ledwave [40];
9’d56: waveout ledwave [39];
9°d57: waveout ledwave [38];

47

ledlogicvalue) ;

ledwaveout) ;

70 9’d58: waveout ledwave [37
71 9’d59: waveout ledwave [36
72 9’d60: waveout ledwave [35
73 9’d61: waveout ledwave [34
74 9°d62: waveout ledwave [33];
75 9°d63: waveout ledwave [32];
76 9’d64: waveout ledwave [31];
77 9°d65: waveout ledwave [30];
78 9’d66: waveout ledwave [29];
79 9°d67: waveout ledwave [28];
80 9°d68: waveout ledwave [27];
81 9’d69: waveout ledwave [26
82 9’d70: waveout ledwave [25
83 9’d71: waveout ledwave [24
84 9°d72: waveout ledwave [23
85 9°d73: waveout ledwave [22];
86 9°d74: waveout ledwave [21];
87 9’d75: waveout ledwave [20];
88 9°d76: waveout ledwave [19];
89 9°d77: waveout ledwave [18];
90 9’d78: waveout ledwave [17];
91 9°d79: waveout ledwave [16];
92 9’d80: waveout ledwave [15
93 9’d81: waveout ledwave [14
94 9’d82: waveout ledwave [13
95 9’d83: waveout ledwave [12];
96 9°d84: waveout ledwave [11];
97 9°d85: waveout ledwave [10];
98 9°d86: waveout ledwave [9];
99 9°d87: waveout ledwave [8];
100 9’d88: waveout ledwave [7];
101 9°d89: waveout ledwave [6];
102 9°d90: waveout ledwave [5];
103 9°d91: waveout ledwave [4];
104 9°d92: waveout ledwave [3];
105 9°d93: waveout ledwave [2];

106 9°d94: waveout ledwave [1];
107 9°d95: waveout ledwave [0];
108 default: waveout — 03

109 endcase

110 endmodule

A.2 PS/2 Keyboard Input - Square Wave Audio Output

1 // Copyright (C) 2018 1Intel Corporation. All rights reserved.
2 Your use of Intel Corporation’'s design tools, logic functions
3 and other software and tools, and its AMPP partner logic

4 // functions , and any output files from any of the foregoing

5 (including device programming or simulation files), and any
6 associated documentation or information are expre y subject
7 // to the terms and conditions of the Intel Program License

8 Subscription Agreement, the Intel Quartus Prime License Agreement ,
9 // the Intel FPGA IP License Agreement, or other applicable license
10 // agreement, including, without limitation , that your use is for
11 // the sole purpose of programming logic devices manufactured by
12 // Intel and sold by Intel or its authorized distributors. Please
13 / refer to the applicable agreement for further details.

14

15 // PROGRAM "Quartus Prime"

16 // VERSION "Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition"
17 // CREATED "Tue Jun 02 16:32:32 2020"

18

19 module KeyboardtoSquareWave (

20 resetSwtich ,

21 Clock50MHz ,

22 Data ,

23 ClockKeyboard ,

24 ResetKeyboard ,

25 AudioOutput

26)

27

28

29 input wire resetSwtich ;

30 input wire Clock50MHz ;

31 input wire Data ;

32 input wire ClockKeyboard ;

33 input wire ResetKeyboard ;

34 output wire AudioOutput ;

35

36 wire [7:0] SYNTHESIZED_ WIRE_0;

37

38

39

40

41

42 SquareWaveOutput b2v _inst (

43 . Clock50MHz (Clock50MHz) ,

44 .resetSwitch (resetSwtich) ,

45 .Keyboard (SYNTHESIZED WIRE O0) ,

46 .audioOuput (AudioOutput));

47

48

49 keyboard press_driver b2v _inst2(

50 .CLOCK_50(Clock50MHz) ,

51 .PS2_DAT(Data) ,

52 .PS2_CLK(ClockKeyboard) ,

53 .reset (ResetKeyboard) ,

54

55

56 .outCode (SYNTHESIZED _WIRE_0)) ;

57 defparam b2v _inst2.FIRST 1’b0;

58 defparam b2v _inst2 . NULL 8 'b0000000O0 ;

59 defparam b2v _inst2.SEENFO0 — 1’bl;

60

61

62 endmodule

1 Copyright (C) 2018 Intel Corporation. All rights reserved.
2 Your use of Intel Corporation’s design tools, logic functions
3 and other software and tools, and its AMPP partner logic

4 /) functions, and any output files from any of the foregoing

5 (including device programming or simulation files), and any
6 associated documentation or information are expressly subject

48

7 // to the terms and conditions of the Intel Program License

8 // Subscription Agreement, the Intel Quartus Prime License Agreement,
9 // the Intel FPGA IP License Agreement, or other applicable license
10 // agreement, including, without limitation , that your use is for
11 // the sole purpose of programming logic devices manufactured by
12 // Intel and sold by Intel or its authorized distributors. Please
13 // refer to the applicable agreement for further details.
14

15 // PROGRAM "Quartus Prime"

16 // VERSION "Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition"
17 // CREATED "Mon Jun 01 17:54:08 2020"

18

19 module SquareWaveOutput (

20 resetSwitch |

21 Clock50MHz ,

22 Keyboard ,

23 audioOuput

24)

25

26

27 input wire resetSwitch ;

28 input wire Clock50MHz ;

29 input wire [7:0] Keyboard:;

30 output wire audioOuput ;

31

32 wire clockInWire ;

33 wire resetWire ;

34 wire SYNTHESIZED WIRE O0;

35 wire [11:0] SYNTHESIZED WIRE 1:

36 wire [11:0] SYNTHESIZED WIRE 2:

37 wire SYNTHESIZED _WIRE_3; -

38 wire SYNTHESIZED _WIRE_8;

39 wire SYNTHESIZED_WIRE_5;

40 wire SYNTHESIZED_WIRE_7;

41 reg DFF _inst7;

42

43 assign audioOuput = DFF _inst7;

44

45

46

47

48 sync b2v _inst (

49 .clk (Clock50MHz) ,

50 .d (SYNTHESIZED_WIRE_O0) ,

51 . q(SYNTHESIZED_WIRE_38)) ;

52

53

54 clockDivider1MHz b2v _inst2(

55 . Clock50MHz (Clock50MHz) ,

56 .resetBut (resetSwitch) ,

57 .Clock1MHz (clockInWire)) ;

58

59

60 comparatortwolnputs b2v inst3(

61 .a(SYNTHESIZED _WIRE 1) ,

62 . b (SYNTHESIZED_WIRE_2) ,

63 . eq (SYNTHESIZED _WIRE_0)

64

65

66

67

68)3

69

70

71 counterl?2 b2v inst4(

72 .clk (clockInWire) ,

73 .reset (resetWire) ,

74 - q(SYNTHESIZED_WIRE 1)) ;

75

76 assign resetWire = SYNTHESIZED WIRE_3 | SYNTHESIZED WIRE_8 | resetSwitch;

78
79 keyboardInputDecoder b2v _inst6 (

80 .data (Keyboard) , -

81 .reset (SYNTHESIZED WIRE 3) ,

82 .countValue (SYNTHESIZED _WIRE_2)) ;
83

84

85 always@ (posedge SYNTHESIZED WIRE_ 8 or negedge SYNTHESIZED_ WIRE_5)
86 begin
87 if (!SYNTHESIZED_ WIRE_5)

88 begin

89 DFF _inst7 < 0;

90 end

91 else

92 begin

93 DFF _inst7 <= SYNTHESIZED_ WIRE_7;
94 end

95 end

96

97 assign SYNTHESIZED WIRE_7 = ~DFF_inst7;
98

99 assign SYNTHESIZED WIRE_5 = “resetSwitch;
100

101

102 endmodule

// Copyright (C) 2018 Intel Corporation. All rights reserved.

// Your use of Intel Corporation’s design tools, logic functions

// and other software and tools, and its AMPP partner logic

// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any
associated documentation or information are expressly subject

to the terms and conditions of the Intel Program License

nent, the Intel Quartus Prime Licer Agreement ,

Subscription Agre

©ONDU A WN

// the Intel FPGA IP License Agreement, or other applicable license
10 // agreement, including, without limitation , that your use is for
11 // the sole purpose of programming logic devices manufactured by
12 // Intel and sold by Intel or its authorized distributors. Please
13 // refer to the applicable agreement for further details.
14
15 // PROGRAM "Quartus Prime"
16 // VERSION "Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition"
17 // CREATED "Mon Jun 01 17:53:29 2020"
18

49

module clockDividerl1MHz (
resetBut ,

Clock50MHz ,
Clock1MHz
)
input wire resetBut ;
input wire Clock50MHz ;
output wire Clock1MHz ;
wire syncEnd ;
wire [7:0] SYNTHESIZED_ WIRE_0;
wire SYNTHESIZED WIRE_1;
wire SYNTHESIZED WIRE_2;

testing b2v_inst(
.clock (syncEnd) ,
.reset (resetBut) ,
.q(ClocklMHz)) ;

comparator10 b2v _inst2 (
. a(SYNTHESIZED_ WIRE_0) ,
.eq (SYNTHESIZED WIRE_1)

) s
defparam b2v _inst2.b 503
sync b2v _inst3(

. clk (Clock50MHz) ,
.d(SYNTHESIZED WIRE 1) ,
.q(syncEnd)) ;

counter8 b2v _inst4 (
. clk (Clock50MHz) |
.reset (SYNTHESIZED WIRE_2) ,
. q (SYNTHESIZED WIRE_0)) :

assign SYNTHESIZED WIRE_ 2 = syncEnd | resetBut;

endmodule

module counter8 (
input logic clk,
input logic reset ,
output logic [7:0] q

always_ ff @(posedge clk, posedge reset)
if (reset) q < 0;
else q <= q + 1;

endmodule

module comparatorl0O# (parameter b 10) (
input logic [
output logic

)

q, neq, It , lte, gt,

assign eq
assign neq
assign It
assign lte
assign gt
assign gte

endmodule

module sync(
input logic clk,
input logic d,
output logic g

)
logic nl;

always ff @(posedge clk)

begin
nl <= d; nonblocking
q <= nl; nonblocking
end

endmodule

module alternating (
input logic clock ,
input logic reset ,
output logic g
)
logic d;
always_ff@ (posedge clock , posedge

if (reset)
begin

end
else
begin

gte

reset)

50

always_ff@(negedge clock ,

end

posedge reset)

if (reset)

else

endmodule

begin

end
begin

end

module keyboardInputDecoder (
input logic [7:0] data,
output logic [11:0] countValue,
output logic reset
)

always comb

case (data)

*Cx /
*Dx
/ *Ex
*«Fx /
*Gx
/5 A
*Bx

*Key Breaks/
default :

endcase

endmodule

module counterl2 (
input logic
input logic
output logic

)
always ff @(posedge
if (reset) q < 0;

else q <— q + 1;

endmodule

module
input
input
output

)

assign
assign
assign
assign
assign
assign

endmodule

module
input
output
output
input
input
input

)

CLOCK _ 50,
reg valid ,
reg [7:0]
PS2_DAT,
PS2_CLK,
reset

parameter FIRST —
reg state:
reg [1:0]

wire [7:0] scan code;
reg [7:0] filter_ scan;
wire scan_ready;
reg read;
parameter NULL

count ;

initial
begin
state — FIRST;
filter scan
read — 1°b0;
count = 2’b00;
end

inner driver that
outputs a
keyboard _inner

. keyboard

driver

"b0010_0001 :
"b0010_ 0011 :

"b0011_0100:

00 00 00 00 00 00 00

"b0011_0010:

clk

1’'b0,

87h00 ;

handles
scan_ready
kbd (
clk (PS2_CLK) ,

begin countValue — 12’b0111
begin
begin
begin
begin

b0010_0100:
b0010 1011:

countValue = 12°b0101

countValue
begin countValue
begin countValue
8’b1111_0000: begin countValue
begin countValue = ’1; reset = 0;

0001 1100: 12°b0100

end

clk ,
reset ,
[11:0] q

. posedge reset)

comparatortwolnputs (

logic

logic
logic

[11:0] a,
[11:0] b,
eq,

neq, It , lte, gt, gte

keyboard press_driver (

makeBreak ,
outCode ,

PS2
PS2

data line

clock

line

SEENF0 = 1'bl;

= NULL;

the
signal

PS2

accompanied

keyboard protocol

with a new

.keyboard data (PS2_DAT) ,

.clock50 (CLOCK_50) ,
.reset (reset),
.read (read) ,

.scan_ready (scan_ready) ,

.scan_code (scan_code)

)

always @(posedge CLOCK_50)

case (count)
2’b00 :

2'b01:

2’b10:

if (scan_ready)
count <= 2’b01;
if (scan_ready)

count < 2'b10;

51

scan_code

1010

1110

0110

_ _1101;
countValue = 12'b0110_1010_0110

1100

countValue = 12°'b0101_1001_0111
12°'b0100_1111_1011

1111

12°b0011_1111_0100
"1; reset

reset
reset
reset
reset
reset
reset
reset
1; end

coococooco

end
end
end
end
end
end
end

49
50
51
52

54
55

57
58

60
61
62

64
65

67
68

70
71

72
73
74

76
7

79
80
81
82
83
84

86
87

89
90
91
92
93
94

© 00N UR W

begin
1'bl;
2’bll;

scan_code;
case (state)

FIRST :
case (scan_code)
87hFO0:
begin
state <— SEENFO;
end
8 "hEO:
begin
state <= FIRST;
end
default :
begin
filter scan <= scan_code;
if (filter scan != scan_code)
begin -
valid <= 1’bl;
makeBreak <— 1’
bl;
end
end
endcase
SEENFO :
begin
state <= FIRST;
if (filter scan == scan_code)
begin -
filter scan NULL;
end N
valid < 1°bl;
makeBreak <= 1’b0;
end
endcase
end
2’bl1l:
begin
read ’b0;
count 27°b00 ;
valid 0;
end
endcase
endmodule
module keyboard inner driver (keyboard_ clk, keyboard_ data, clock50, reset , read, scan_ready, scan_code);

input keyboard clk;

input keyboard data;

input clock50; 50 Mhz system clock

input reset;

input read;

output scan_ready;

output [7:0] scan_code;

reg ready _set;

reg [7:0] scan_code;

reg scan_ready;

reg read char;

reg clock; 25 Mhz internal clock

reg [3:0] incnt;

reg [8:0] shiftin;

reg [7:0] filter;

reg keyboard_clk_filtered;
n_ ready is set to 1 when scan code is available.
>r should set read to 1 and then to 0 to clear scan_ready

always @ (posedge ready set or posedge read)

if (read == 1) scan_ ready <= 0;
else scan_ready <— H
divide —by—two 50MHz to 25MHz
always @(posedge clock50)
clock <= Tclock;
This process filters the raw clock signal coming from the keyboard
using an eight—bit shift register and two AND gates
always @Q(posedge clock)
begin
filter <= {keyboard_clk, filter [7:1]};

if (filter—=-=8b1111_1111) keyboard_clk filtered <— 1;
else if (filter——81DH0000 0000) keyboard clk_filtered <— 0;
end

This process reads in serial data coming from the terminal
always @(posedge
begin
if (reset==1)
begin
incnt <= 4’b0000;
read char <= 0;
end -
else if
begin
read char
ready set <
end -
else

begin

keyboard _clk _filtered)

(keyboard _data=—0 && read _char==0)

shift in next 8 data bits to assemble a code
if (read_char —— 1)
begin
if (incnt <
begin
incnt <=

shiftin =

scan

9)

incnt 4 1°bl;

{ keyboard data, shiftin [8:1]};

52

68
69
70
71

73
74
75
76
77
78
79
80
81

© 0O Uk W

ready _set < 03
end
else
begin
incnt <= 0
scan_code shiftin [7:0];
read_char 0;
ready set < 1;
end -
end

end
end

endmodule

A.3 Infrared Receiver Input - Seven Segment Display Output

IR Reader
By: Caden Friesen
module IRreader (
input logic resetbutton ,
input logic ir ,
input logic clk .
output logic [6:0] dig0, digl, dig2, dig3,
output logic segl, seg2, seg3, segd4, segh, segb, segT7, seg8);
logic leadcounterreset ;
logic [21:0] leadtimed;
logic [21:0] dffleadtimed;
logic [21:0] greaterthanlead;
logic [21:0] lessthanlead ;
logic leadconfirm ;
logic enablerout ;
logic [5:0] countthirtytwoout:
logic [5:0] zero;
logic [5:0] threetwo;
logic combinedenabler ;
logic thirtytwoconfirmed;
logic [21:0] timedpulse;
logic [21:0] timepulseflopped;
logic onecompared;
logic zerocompared ;
logic [21:0] greaterone;
logic [21:0] greaterzero;
logic [21:0] lesszero;
logic [21:0] lessone;
logic resultflopclk ;
logic resultflopout ;
logic [31:0] shiftout;
logic [31:0] shiftacceptout ;
logic [31:0] decoderinput;
logic [6:0] digzero;
logic [6:0]| digone;
logic [6:0] digtwo;
logic [6:0] digthree;
logic sameaddress;
logic samecommand ;
logic sameboth;
logic neenabler;
logic oneorzero;
logic resetterout ;
logic pulsecounterreset ;
logic enablerreset ;
equal to 14ms in clock periods which are 20ns (700,000)
assign greaterthanlead 22’b0010101010111001100000 ;

equal to 13 ms in clock

assign lessthanlead 22’b0010011110101100010000 ;
assigns the range for the count to thirty two
assign threetwo = 6’b100001;
assign zero — 6°b000000 ;
assign leadcounterreset “resetbutton || ir;
assign combinedenabler thirtytwoconfirmed && enablerout ;
assign pulsecounterreset = enablerout && ir;
125000 clock cycles 2.5 ms
assign greaterone 22’b0000011110100001001000 ;
100000 clock cycles 2.0 ms
assign lessone = 22’b0000011000011010100000 ;
68750 clock cycles 1.375 ms
assign greaterzero 22’b0000010000110010001110;
43750 clock cycles .875 ms
assign lesszero — 22’b0000001010101011100110;
assign oneorzero = onecompared ~ zerocompared;
assign resultflopclk = oneorzero && ir ;
assign enablerreset = “resetbutton;
check for the inverse address and commands received
assign sameaddress (shiftacceptout [31] ~ shiftacceptout[23]) && (shiftacceptout [30] shiftacceptout

periods which are 20ns (650,000)

[22]) && (shiftacceptout [29] ~ shiftacceptout[21]) && (shiftacceptout[28] ~
(shiftacceptout [27] shiftacceptout [19]) && (shiftacceptout [26]
shiftacceptout [25] - shiftacceptout[17]) && (shiftacceptout [24] -
shiftacceptout [31:24] ~ shiftacceptout [23:16];

assign samecommand = (shiftacceptout[15] -~ shiftacceptout[7]) && (shiftacceptout[14] ~ shiftacceptout
[6]) && (shiftacceptout [13] shiftacceptout [5]) && (shiftacceptout [12] shiftacceptout [4]) && (
shiftacceptout [11] - shiftacceptout [3]) && (shiftacceptout|[10] ~ shiftacceptout [2]) && (
shiftacceptout [9] ~ shiftacceptout[1]) && (shiftacceptout[8] ~ shiftacceptout[0]) ;

shiftacceptout [15:8] shiftacceptout [7:0];

samecommand && sameaddress ;

shiftacceptout [20]) &&
shiftacceptout [18]) && (
shiftacceptout [16]) ;

assign sameboth

53

90
91
92
93

95
96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

©00 N U AW

lights up NE if not inverses

assign neenabler (Tthirtytwoconfirmed) ~ sameboth;
assign segl “neenabler;
assign seg2 — " neenabler;
assign seg3 = " neenabler;
assign seg4 — " neenabler;
assign segb — " neenabler;
assign segb — " neenabler;
assign seg7 = ~“neenabler;
assign seg8 — " neenabler;
Search for lead code section
counterir #(22) leadcounter(clk, leadcounterreset , leadtimed);
twotwobitreg leadtocomp (ir, “resetbutton , leadtimed , dffleadtimed);
comparatorir leadcomp (dffleadtimed , greaterthanlead , lessthanlead , leadconfirm);
myDFF enablerdff(leadconfirm , leadconfirm , enablerreset, enablerout);
myDFF enablerresetter (enablerout , enablerout, resetterout , resetterout);

counts to thirty two to see when code should be done

counterir #(6) countthirtytwo (ir, enablerout, countthirtytwoout):

comparatorir #(6) comparethirtytwo(countthirtytwoout , threetwo, zero, thirtytwoconfirmed):;
Counts length of ir pulses

counterir #(22) pulsecounter (clk, pulsecounterreset , timedpulse)

twotwobitenabledreg pulsereg (ir, enablerout, combinedenabler, timedpulse, timepulseflopped);
checks if ir pulse is zero or one

comparatorir zerocompare (timepulseflopped , greaterzero , lesszero , zerocompared) ;

comparatorir onecompare (timepulseflopped , greaterone, lessone, onecompared) ;

shift register

myDFF resultflop (onecompared , resultflopclk , enablerout, resultflopout);

shiftregister theshifter (ir, enablerout, resultflopout , shiftout);

threetwobitreg shiftaccepter(~ thirtytwoconfirmed , enablerout, shiftout , shiftacceptout);
threetwobitreg decoderregister (sameboth, enablerout ., shiftout , decoderinput);

seven segment decoders

sevenseg digzerodecode (decoderinput [11:8], dig0);
sevenseg digonedecode (decoderinput [15:12], digl);
sevenseg digtwodecode(decoderinput [27:24], dig2);

sevenseg digthreedecode (decoderinput [31:28], dig3);
endmodule
Counter
By: Caden Friesen
module counterir #(parameter N=22)
(input logic clk ,

input logic reset ,
output logic [N—1:0] B);

always ff@ (posedge clk)

=B-+1;
always ff@ (posedge reset)
B<—0;
endmodule
22 bit enabled register
By: Caden Friesen
module twotwobitenabledreg (input logic clk, reset , enabled,

input logic [21:0] datain,
output logic [21:0] dataout);

enabledDFF s1 (datain[0], clk, reset, enabled, dataout[O0]) :
enabledDFF s2 (datain[1], clk, reset, enabled, dataout[1]);
enabledDFF s3 (datain[2], clk, reset, enabled, dataout[2]);
enabledDFF s4 (datain[3], clk, reset, enabled, dataout[3]);
enabledDFF s5 (datain|[4], clk, reset, enabled, dataout |[4]);
enabledDFF s6 (datain|5], clk, reset, enabled, dataout|[5]):
enabledDFF s7 (datain[6], clk, reset, enabled, dataout|[6]);
enabledDFF s8 (datain|[7], clk, reset, enabled, dataout[7]);
enabledDFF s9 (datain[8], clk, reset, enabled, dataout[8]) :
enabledDFF s10 (datain[9], clk, reset, enabled, dataout[Q]);
enabledDFF s11 (datain[10], clk, reset, enabled, dataout[10]):
enabledDFF s12 (datain[11], clk, reset, enabled, dataout[11])
enabledDFF s13 (datain[12], clk, reset, enabled, dataout[12]);
enabledDFF s14 (datain[13], clk, reset, enabled, dataout[13]);
enabledDFF s15 (datain|[14], clk, reset, enabled, dataout[14])
enabledDFF s16 (datain|[15], clk, reset , enabled dataout [15]) ;
enabledDFF s17 (datain[16], clk, reset, enabled, dataout|[16]);
enabledDFF s18 (datain|[17]|, clk, reset, enabled, dataout[17]);
enabledDFF s19 (datain[18], clk, reset, enabled, dataout[18]);
enabledDFF s20 (datain[19], clk, reset, enabled, dataout[19]):
enabledDFF s21 (datain[20], clk, reset, enabled, dataout[20]):
enabledDFF s22 (datain[21], clk, reset, enabled, dataout[21])
endmodule
Bit register
Caden Friesen
module twotwobitreg(input logic clk, reset ,

input logic [21:0] datain,
output logic [21:0] dataout);

myDFF s1 (datain [0] clk , reset , dataout[O0]) ;
myDFF s2 (datain[1], clk, reset, dataout[1]);
myDFF s3 (datain[2], clk, reset, dataout[2]);
myDFF s4 (datain[3], clk, reset, dataout[3]);
myDFF s5 (datain|[4], clk, reset , dataout|[4]);
myDFF s6 (datain|[5], clk, reset, dataout|5]);
myDFF s7 (datain|[6], clk, reset, dataout |6]);

ot
=~

15
16
17
18

20
21
22
23
24
25
26
27
28

30

©ON®U A WN

e
NHO©OOU A WN -

©00NO U R WN

myDFF s8 (datain[7], clk, set , dataout|[7]) ;
myDFF s9 (datain [8], clk, reset, dataout[8]) ;
myDFF s10 (datain[9], clk, reset, dataout[9]):
myDFF s11 (datain[10], clk, reset, dataout[10
myDFF s12 (datain[11], clk, reset, dataout[11
myDFF s13 (datain|[12], clk, reset, dataout[12
myDFF s14 (datain[13], clk, reset, dataout[13
myDFF s15 (datain[14], clk, reset, dataout[14
myDFF s16 (datain|[15], clk, reset, dataout|[15
myDFF s17 (datain[16], clk, reset, dataout|[16
myDFF s18 (datain[17], clk, reset, dataout[17
myDFF s19 (datain[18], clk, reset, dataout[18
myDFF s20 (datain[19], clk, reset, dataout[19
myDFF s21 (datain [20] clk , reset , dataout[20
myDFF s22 (datain[21] clk , reset , dataout[21
endmodule
32 Bit Register
By: Caden Friesen
module threetwobitreg (input logic clk , reset ,
input logic [31:0] datain ,
output logic [31:0] dataout);
myDFF s1 (datain|[0], clk, reset, dataout[0])
myDFF s2 (datain|[1], clk, reset, dataout|[1])
myDFF s3 (datain [2], clk, reset, dataout[2])
myDFF s4 (datain[3], clk, reset, dataout[3])
myDFF s5 (datain[4], clk , set , dataout[4])
myDFF s6 (datain[5], clk, reset, dataout[5]) ;
myDFF s7 (datain[6], clk, reset , dataout[6]) ;
myDFF s8 (datain|[7], clk, reset , dataout[7]) ;
myDFF s9 (datain [8], clk, reset, dataout|[8])
myDFF s10 (datain[9], clk, reset , dataout[9]
myDFF s11 (datain[10], clk, reset, dataout[1
myDFF s12 (datain[11], clk, reset, dataout |l
myDFF s13 (datain |12 clk , reset , dataout |1
myDFF s14 (datain[13 clk , reset , dataout
myDFF s15 (datain[14 clk , reset , dataout
myDFF s16 (datain[15 clk , reset , dataout
myDFF s17 (datain|[16 clk , reset , dataout
myDFF s18 (datain[17 clk , reset , dataout
myDFF s19 (datain[18 clk , reset , dataout
myDFF s20 (datain[19 clk , reset , dataout
myDFF s21 (datain[20], clk, reset, dataout
myDFF s22 (datain[21], clk, reset, dataout
myDFF s23 (datain [22 clk , reset , dataout
myDFF s24 (datain[23 clk , reset , dataout
myDFF s25 (datain[24 clk , reset , dataout
myDFF s26 (datain[25 clk , reset , dataout
myDFF s27 (datain[26 clk , reset , dataout
myDFF s28 (datain[27 clk , reset , dataout
myDFF s29 (datain[28 clk , reset , dataout
myDFF s30 (datain[29 clk , reset , dataout
myDFF s31 (datain[30], clk, reset, dataout
myDFF s32 (datain[31], clk, reset, dataout[31]
endmodule
Comparator
By: Caden Friesen
module comparatorir#(parameter N= 22)
(input logic [N—-1:0] a, greatera, lessa ,
output logic inrange
logic lte;
logic gte;
assign lte (a <= greatera);
assign gte (a > lessa) ;
assign inrange lte && gte;
endmodule
DFF
By: Caden Friesen
module myDFF(input logic D,
input logic clk,
input logic reset ,
output logic Q);
always@ (posedge clk)
Q = D;
always@ (posedge reset)
1°b0;
endmodule
Seven Segment Decoder
By: Caden Friesen
module sevenseg (input logic [3:0] data,
output logic [6:0] segments);
always _comb
case (data)
gfe dcba
Assigns an output bus depending on the input decimal
0: segments = 7’b100_0000;
1: segments = 7°'b111_1001;
2: segments = 7’b0100_100;
3: segments — 7°'b011_0000;
4: segments 7°b001__ 1001 ;
5: segments 7°b001_0010;
6: segments 7’b000_0010;
7: segments 7’b111_1000;
8: segments = 7’b000_0000;
9: segments = 7°b001_1000;
10: segments = 7’b000_1000;
11: segments = 7’b000_0011;
12: segments = 7°'b100_0110;
13: segments = 7°'b010_0001;
14: segments — 7°'b000_0110;
15: segments 7°b000_1110;
default shows nothing
default: segments 7’b111_1111;

55

number

28
29

© 00U W

endmodule

Enabled DFF
By: Caden Friesen
module enabledDFF (input logic D,
input logic clk ,
input logic reset ,
input logic enabled ,
output logic Q)
always@ (posedge clk)
if (enabled)
<= D;
always@ (posedge reset)
<= 0;
endmodule
Shift Register
By: Caden Friesen
module shiftregister (input logic clk, reset ,
input logic datain ,
output logic [31:0] dataout):
myDFF s0 (datain, clk, reset, dataout[0]);
myDFF s1 (dataout[0], clk, reset, dataout[1])
myDFF s2 (dataout|[1], clk, reset, dataout[2]);
myDFF s3 (dataout[2], clk, reset, dataout[3]);
myDFF s4 (dataout[3], clk, reset, dataout[4]) ;
myDFF s5 (dataout|[4], clk, reset , dataout[5]) ;
myDFF s6 (dataout|[5], clk, reset, dataout[6]) ;
myDFF s7 (dataout|[6], clk, reset , dataout|[7]);
myDFF s8 (dataout [7] clk , reset , dataout|[8]) ;
myDFF s9 (dataout|[8], clk, reset, dataout|[9]) ;
myDFF s10 (dataout[9], clk, reset, dataout[10])
myDFF s11 (dataout[10 clk , reset , dataout[11])
myDFF s12 (dataout[11 clk, reset, dataout|[12])
myDFF s13 (dataout[12 clk, reset, dataout[13])
myDFF s14 (dataout[13 clk , reset , dataout[14])
myDFF s15 (dataout[14 clk , reset , dataout[15])
myDFF s16 (dataout[15 clk , reset , dataout[16])
myDFF s17 (dataout[16 clk , reset , dataout[17])
myDFF s18 (dataout[17], clk, reset, dataout[18])
myDFF s19 (dataout|[18], clk, reset, dataout|[19])
myDFF s20 (dataout[19], clk, reset, dataout[20]);
myDFF s21 (dataout [20 clk , reset , dataout[21])
myDFF s22 (dataout [21 clk , reset , dataout[22]);
myDFF s23 (dataout[22 clk, reset, dataout[23])
myDFF s24 (dataout[23 clk, reset, dataout|[24])
myDFF s25 (dataout[24 clk , reset , dataout[25])
myDFF s26 (dataout[25 clk , reset , dataout[26])
myDFF s27 (dataout[26 clk , reset , dataout[27])
myDFF s28 (dataout|[27 clk , reset , dataout[28])
myDFF s29 (dataout[28], clk, reset, dataout[29])
myDFF s30 (dataout[29], clk, reset, dataout[30])
myDFF s31 (dataout[30], clk, reset, dataout[31])

endmodule

endcase

B Simulation Files (Do
B.1 NES Controller Input - Motor and Addressable LED Output

scripts)

—nowave —force
—divider —height
rst
clk50mhz
data

divider
neslatch

restart
add
add
add
add
add
add

wave <Inputs>
wave
wave
wave
wave
wave

height <Output_to_controller>

©ONO U AW

add
add
add
add
add
add
add
add
add
add
add
add
add
add

wave
wave
wave
wave outcw
wave
wave
wave
wave
wave
wave
wave
wave
wave

a
b

start
up
down
left
wave right
rst 1
clk50mhz
data 1

force
force
force
run 10
force
force

rst 0O
clk50mhz

nesclk
divider
outccw

leddata
—divider

select

0

1

0,

height 30

—height 30

0 {1 ps}

<Outputs>

<Useful _Informations (Buttons)>

r

2

69, 1 @ 175, 0 @ 319, 1 @ 325, 0 @ 469, 1 @ 475, 0 @ 619, 1 @ 625, 0 @

925, 0 @ 1069, 1 @ 1075, 0 @ 1219, 1 @ 1225, 0 @ 1250

0 @ 2638, 1 @ 2653, 0 @ 2776, 1 @ 2791, 0 @ 2914, 1 @ 2929,
0 @ 3328, 1 @ 3343, 0 @ 3466, 1 @ 3481, 0 @ 3604, 1 @ 3619,

0 @ 4018, 1 @ 4033, 0 @ 4156, 1 @ 4171, 0 @ 4294, 1 @ 4309,
0 @ 4708, 1 @ 4723, 0 @ 4846, 1 @ 4861, 0 @ 4984, 1 @ 4999,

force data 0 @ 19,
769, 1 @ 775, 0
data 0 @ 2500,
@ 3067, 0 @ 3190,
@ 3757, 0 @ 3880,
1 @ 4447, 0 @ 4570,
1 @ 5137
data 0 @ 2551, 1
@ 3109, 0 @ 3241, 1
@ 3799, 0 @ 3931, 1
1 @ 4489, 0 @ 4621,
1 @ 5179
run 6000

1@ 25, 0@ 1
@ 919, 1 @
1@ 2515,
1 @ 3205,
1 @ 3895,
1 @ 4585,

force 0 @ 3052, 1
0 @ 3742, 1
0 @ 4432,

0@ 5122,

0 @ 2689, 1
0 @ 3379, 1

0 @ 4069, 1
0 @ 4759,

force @ 2557,
@ 3247,
@ 3937,
1 @ 4627,

@ 2695,
@ 3385,
@ 4075,
1 @ 4765,

0 @ 2827, 1
0@ 3517, 1

0 @ 4207, 1
0 @ 4897,

@ 2833,
@ 3523,
@ 4213,
1 @ 4903,

0 @ 2965, 1
0 @ 3655, 1

0 @ 4345, 1
0 @ 5035,

@ 2971,
@ 3661,
@ 4351,
1@ 5041,

0 @ 3103, 1
0 @ 3793, 1
0 @ 448:
0@ 51

56

©ONOU AW

restart —force —nowave

add wave —divider —height 30 <Input>
add wave clk

add wave reset

add wave —divider —height 30 <Output>
add wave newclk

add wave —~divider height 30 <Internal_Counter>
add wave t -
radix signal t unsigned

force reset 1

force clk 1 0, 0 {1ps} —r 2

run 2

force reset 0O

run 66

restart force nowave

add wave divider height 30 <Inputs>
add wave count

radix signal count unsigned

add wave —divider —height 30 <Output>
add wave gt

force reset 1

force clk 1 0, 0 {1ps} —r 2

run 2

force reset O

run 44

restart —force —nowave

add wave —divider —height 30 <Inputs>
add wave reset

add wave srst

add wave —divider —height 30 <Output>
add wave rst

force reset 1

force clk 1 0, 0 {1ps} —r 2

run 10

force reset 0O

run 46

restart —force —nowave

add wave —divider —height 30 <Inputs>
add wave count

radix signal count unsigned

add wave —~divider height 30 <Output>
add wave nesclk

force reset 1

force clk 1 0, 0 {1ps} —r 2

run 2

force reset 0O

run 44

restart force nowave

add wave —divider height 30 <Inputs>
add wave clk

add wave reset

add wave —divider —height 30 <Output>
add wave count

radix signal count unsigned

force reset 1

force clk 1 0, 0 {1ps} —r 2

run 2

force reset O

run 44

restart —force —nowave

add wave —divider —height 30 <Inputs>

add wave count

radix signal count unsigned

add wave —divider —height 30 <Output>

add wave neslatch

force reset 1

force clk 1 0, 0 {lps} —r 2

run 2

force reset 0O

run 44

restart —nowave —force

add wave —divider —height 30 <Inputs>

add wave rst

add wave count

radix signal count unsigned

add wave nesdata

add wave —divider —height 30 <Outputs>

add wave a

add wave b

add wave select

add wave start

add wave up

add wave down

add wave left

add wave right

force reset 1

force clk 0

force nesdata 1

run 10

force reset 0O

force c¢lk 1 0, 0 {3 ps} —r 6

force nesdata 0 @ 19, 1 @ 25, 0 @ 169, 1 @ 175,
@ 769, 1 @ 775, 0 @ 919, 1 @ 925, 0 @ 1069,

run 1372

0 @ 319,
1 Q@

57

1

1075,

@ 325,
0@ 1219,

1 Q@

0 @ 469, 1
1225,

@ 475, 0 @ 619,
0 @ 1250

1

@ 625,

0

©ONOU AW

restart —force —nowave

add wave —divider —height 30 <Inputs>
add wave gt

add wave clk

add wave —divider —height 30 <Output>
add wave srst

force reset 1

force clk 1 0, 0 {1ps} —r 2
run 2

force reset 0O

run 46

restart —nowave —force

add wave —divider —height 30 <System _inputs>
add wave clk

add wave reset

add wave divider height 30 <User inputs>
add wave colorbutton -

add wave u

add wave d

add wave —divider —height 30 <Output>

add wave colorvalue

radix signal colorvalue unsigned

force reset 1

force clk 0

force colorbutton 0
force u 0

force d 0

run 10

force reset 0O

force c¢lk 0 @ 10, 1 @ 15, 0 @ 20, 1 @ 25 —r
run 10

force u 1

run 10

force u 0

force d 1

run 10

force d 0

force colorbutton 1
run 10

force colorbutton 0
force u 1

force d 1

run 10
force colorbutton 1
run 10

force d 0
run 2550
force u 0
force d 1
run 2550

restart —force —nowave

add wave —divider —height 30 <System _inputs>
add wave clk

add wave reset

add wave —divider height 30 <GRB_value>
add wave count -

radix signal count unsigned

force reset 1

force clk 0

force grb 0O

run 10

force reset 0O

force c¢lk 1 0, 0 {1000 ps} r 2ns
force grb 010001110001101010000101
run 500ns

restart —nowave —force

add wave —divider —height 30 <System _inputs>
add wave clk

add wave reset

add wave —divider —height 30 <User_inputs>
add wave gcolorbutton

add wave rcolorbutton

add wave bcolorbutton

add wave up

add wave down

add wave —divider —height 30 <Output>

add wave grbvalue

force reset 1

force clk 0

force gcolorbutton 0

force rcolorbutton 0

force bcolorbutton 0

force up 0

force down 0

run 10

force reset 0O

force ¢lk 0 @ 10, 1 @ 15, 0 @ 20, 1 @ 25 —r
force gcolorbutton 1

force up 1

run 2550

force up 0

force down 1

run 2550

force down 0

force gcolorbutton
force rcolorbutton 1
force up 1

run 2550

force up 0

force down 1

run 2550

force down 0

force rcolorbutton 0
force bcolorbutton
force up 1

run 2550

-

20

20

58

43
44
45
46

48
49
50
51
52
53
54
55
56
57
58
59

©ON®U AW

© 00U W

0 NO TR WN

o UR W

force up 0

force down 1

run 2550

force down 0

force bcolorbutton
force gcolorbutton
force rcolorbutton
force bcolorbutton
up 1

run 2550

up 0

force down 1

run 2550

force down 0

force gcolorbutton
force rcolorbutton
force bcolorbutton 0

[

force

force

oo

—force —nowave

—divider —height 30 <System _inputs>
clk
reset
divider
grb
divider
ledout

restart
add
add
add
add
add
add
add

wave
wave
wave
wave
wave
wave
wave

height 30 <GRB_value>

height 30 <Output_data>

reset 1
clk 0O
grb 0O

force
force
force
run 10
force reset 0O

force clk 1 0, 0 {1000 ps} —r 2ns
force grb 010001110001101010000101
run 500ns

—force
—divider
rst
reset
divider
grb
divider
ledwaveout

restart

add wave
add wave
add wave
add wave
add wave
add wave
add

—nowave

—height 30 <System _inputs>

height 30 <GRB_value>

height 30 <Output>
wave

force
force
force
run 1
force reset 0O
e clk 1 0, 0 {1000 ps} —r 2ns
e grb 010001110001101010000101
500ns

forc
forc
run

—force —nowave
—divider —height
clk
reset
count
ledwaveout

signal count

—divider
ledout

restart

add wave
add wave
add wave
add wave
add wave
radix
add
add

30 <System _inputs>

unsigned

wave —height 30 <Output>

wave

reset 1

clk 0O

grb 0O

0

reset O

clk 1 0, 0 {1000 ps} —r 2ns
grb 010001110001101010000101
00ns

force
force
force
run 1
force
force
force
run 5

B.2 PS/2 Keyboard Input - Square Wave Audio

vsim . work . KeyboardtoSquareWave

add wave *

force resetSwtich 1 @ 1, 0 @ 2
force ResetKeyboard 1 @ 1, 0 @ 2
force Clock50MHz 0 @ 1, 1 @ 2 r 2
force ClockKeyboard 0 @ 1, 1 @ 10 —r 10
force Data 1 @ 1

force Data 0 @ 10

force Data 0 @ 20

force Data 1 @ 30

force Data 0 @ 40

force Data 0 @ 50

force Data 0 @ 60

force Data 0 @ 70

force Data 1 @ 80

force Data 1 @ 90

run 20 us

vsim . work.SquareWaveOutput

add wave

force Clock50MHz 0 @ 1, 1 @ 2 r 2
force resetSwitch 1 @ 1, 0 @ 2

run 20

force Keyboard 00100001 @ 25

run 20

vsim . work.clockDivder1MHz

add wave *
force Clock50MH
force resetBut
run 20 us

@ 1,
1,

1 @2 —r 2
0@ 2

z 0
1 Q@

59

Output

O UUR W NO G WN R NO G WN R o UR W ©00NO U AW o UR W

©0N®U AW

-

vsim .work.counter8

add wave =*

force clk 0 @ 1 1@ 2 —r 2
force reset 1 @ 1, 0 @ 2
run 20

vsim .work.comparatorl0

add wave *

force a 000000

run 10

force a 000010

run 10

force a 001010

run 10

vsim . work.sync

add wave *

force ¢clk 0@ 1, 1 @ 2 —r 2
force d 1 @ 0, 0 @ 10

run 20
vsim.work.alternating

add wave *

force clock 0 @ 1, 1 @ 2 r 2
force reset 1 @ 1, 0 @ 2
force reset 1 @ 5, 0 @ 10 —r 5

run 20

vsim . work . keyboardInputDecoder

add wave *

force data 00100001
run 20

force data 00110100
run 20

vsim.work.counterl12

add wave *

force c¢lk 0 @ 1, 1 @ 2 r 2
force reset 1 @ 1, 0 @ 2
run 20

vsim.work.comparatortwolnputs

add wave *
force a 001010
force b 000111
run 20

force a 000011
force b 000011
run 20

force a 01111
force b 11111
run 20

vsim.work . keyboard press_driver

add wave *
force CLOCK 50 0 @ 1, 1 @ 2 —r 2

force reset 1 @ 1, 0 @ 2
force PS2._ CLK 0 @ 1, 1 @ 10 —r 10
force PS2_ DAT 1 @ 1
force PS2_DAT 0 @ 10
force PS2_DAT 0 @ 20
force PS2_DAT 1 @ 30
force PS2_DAT 0 @ 40
force PS2_DAT 0 @ 50
force PS2_DAT 0 @ 60
force PS2_DAT 0 @ 70
force PS2_DAT 1 @ 80
force PS2_DAT 1 @ 90

run 100

vsim .work. keyboard inner driver

add wave =*

force clock50 0 , 1
force reset 1 @ 0 @
force read 1 @ 1, 0 @ 2
force keyboard_clk 0 @ 1, 1 @ 10 r 10

@ 1 @ 2 —r 2
1, 2

force keyboard data 1 @ 1
force keyboard data 0 @ 10
force keyboard data 0 @ 20
force keyboard data 1 @ 30
force keyboard data 0 @ 40
force keyboard:data 0 @ 50
force keyboard_data 0 @ 60
force keyboard_ data 0 @ 70
force keyboard data 1 @ 80
force keyboard_ data 1 @ 90

B.3 Infrared Receiver Input - Seven

force clk O 0, 1 1 r 20000
force resetbutton 0 0, 1 1000000, 0 2000000, 1 3000000

60

Segment Display Output

3 force ir 0O O, 1 500000000, 0O 9500000000, 1 14000000000, 0 14562000000.5, 1 16250000000, 0 16812000000.5,
1 17375000000, O 17937000000.5, 1 19625000000, 0 20187000000.5, 1 21875000000, 0O 22437000000.5, 1

23000000000, 0 23562000000.5, 1 24125000000, 0O 24687000000.5, 1 25250000000, 0 25812000000.5, 1
27500000000, 0 28062000000.5, 1 28625000000, 0 29187000000.5, 1 30875000000, 0 31437000000.5, 1
32000000000, 0 32562000000.5, 1 33125000000, 0 33687000000.5, 1 35375000000, 0 35937000000.5, 1
37625000000, 0 38187000000.5, 1 39875000000, 0O 40437000000.5, 1 41000000000, 0 41562000000.5, 1
43250000000, 0 43812000000.5, 1 44375000000, 0 44937000000.5, 1 45500000000, 0 46062000000.5, 1
46625000000, 0 47187000000.5, 1 48875000000, 0 49437000000.5, 1 51125000000, 0 51687000000.5, 1
52250000000, 0 52812000000.5, 1 54500000000, 0 55062000000.5, 1 55625000000, 0 56187000000.5, 1
57875000000, 0 58437000000.5, 1 60125000000, 0 60687000000.5, 1 62375000000, 0 62937000000.5, 1
63500000000, 0 64062000000.5, 1 64625000000, 0 65187000000.5, 1 66875000000, 0 67437000000.5, 1
68000000000, 0 68562000000.5 1 69125000000, 0 69687000000.5 1 70250000000, 0 70812000000.5

4
5
6 run 71000000000

References

[1] D. S. Hauck, “Del-soc interfaces and peripherals.” https://class.ece.uw.edu/271/hauck2/
del/index.html.

[2] D. S. Hauck, “Ps/2 keyboard tutorial.” https://class.ece.uw.edu/271/hauck2/del/
keyboard/PS2Keyboard. pdf.

61

https://class.ece.uw.edu/271/hauck2/de1/index.html
https://class.ece.uw.edu/271/hauck2/de1/index.html
https://class.ece.uw.edu/271/hauck2/de1/keyboard/PS2Keyboard.pdf
https://class.ece.uw.edu/271/hauck2/de1/keyboard/PS2Keyboard.pdf

	Project Description
	NES Controller Input - Motor and Addressable LED Output
	Clock Divider
	NES Reader
	NES Counter
	Comparator
	Synchronizer
	Countreset
	Neslatch
	Nesclk
	Read

	Grbcounter
	Colorcounter

	Led
	Counter
	comparator
	syncronizer
	countreset
	Twenty Four Bit to Ninety Six Bit
	waveout

	PS/2 Keyboard Input - Square Wave Audio Output
	Functional Unit 1 - SquareWaveOutput
	Individual Block 1 - ClockDivider1MHz
	Individual Block 2 - counter8
	Individual Block 3 - comparator10
	Individual Block 4 - sync
	Individual Block 5 - alternating
	Individual Block 6 - keyboardInputDecoder
	Individual Block 7 - counter12
	Individual Block 8 - comparatortwoInputs

	Functional Unit 2 - keyboard_press_driver
	Individual Block 9 - keyboard_inner_driver

	Infrared Receiver Input - Seven Segment Display Output
	Individual Block 1 - Lead Counter
	Individual Block 2 - Lead to Comp
	Individual Block 3 - Lead Comp
	Individual Block 4 - Enabler DFF
	Individual Block 5 - Pulse Counter
	Individual Block 6 - Count Thirty Two
	Individual Block 7 - Compare Thirty Two
	Individual Block 8 - Pulse Reg
	Individual Block 9 - Zero Compare and One Compare
	Individual Block 10 - Result Flop
	Individual Block 11 - The Shifter
	Individual Block 12 - Shift Acceptor
	Individual Block 13 - Same command, Same Address, and Same Both
	Individual Block 14 - Decoder Register
	Individual Block 15 - Digzero decode through Digthree encode
	Individual Block 16 - Not Equal Outputs

	SystemVerilog Files
	NES Controller Input - Motor and Addressable LED Output
	PS/2 Keyboard Input - Square Wave Audio Output
	Infrared Receiver Input - Seven Segment Display Output

	Simulation Files (Do scripts)
	NES Controller Input - Motor and Addressable LED Output
	PS/2 Keyboard Input - Square Wave Audio Output
	Infrared Receiver Input - Seven Segment Display Output

