
ECE 341 Accelerated Project Report

AP Report
Authors: Shelby Westerberg, Trevor Horine, Bryson Goto

December 3, 2020

Instructor: Matthew Shuman
Grading TA: Shane Witsell

1

Contents
1 Introduction 3

2 Background 3

3 Procedure 3
3.1 Simulation and Calculations . 3
3.2 Construction and Verification . 5
3.3 Coding . 8
3.4 Final Product . 9

4 Results 11
4.1 Simulation and Calculations . 11
4.2 Construction and Verification . 12
4.3 Coding . 16
4.4 Final Product . 16

5 Conclusion 18

6 Appendix 20
6.1 Arduino Sample Collection Code . 20
6.2 Matlab FFT and Graphing Single Set of Data 22
6.3 Matlab Repeated Calculations and LED Communication 25
6.4 Bill of Materials . 28

References 29

2

1 Introduction
The objective of the project is to create a tone detector. The device must detect
notes from middle C to high C, with at least +/-0.5% tolerance for the tuning of
the sound. This tone detector must create visual output by lighting exactly one of
eight LED’s which corresponds to the note being detected, or no LED at all if no
note is being played. The device should be able to work with the audio source at
least ten feet away from the microphone. Quantitative measures of success in
getting a quality reading are as follows: a signal to noise ratio of at least 20 for the
sampled audio signal, and at least 20 samples acquired in the detected period.
Additionally, the output of the audio amplifier should be greater than 1 volt when
an audio source is playing, and less than 0.2 volts when no sound is playing.

2 Background
The range of frequencies to be detected are shown in Table 1 below, along with the
lower and upper bounds of the smallest acceptable range (+/-0.5%) that must be
detected for each. [1]

Table 1: These are the frequencies that need to be detected and the acceptable
range that can be identified as each frequency.

Note Ideal Frequency (Hz) Lower bound (Hz) Upper bound (Hz)
C4 261.6256 260.0190 262.6322
D4 293.6648 292.1965 295.1331
E4 329.6276 327.9795 331.2757
F4 349.2282 347.4821 350.9743
G4 391.9954 390.0354 393.9554
A4 440.0000 437.8000 442.2000
B4 493.8833 491.4139 496.3527
C5 523.2511 520.6348 525.8674

To meet the objective of acquiring at least 20 samples per period, the device must
sample with a frequency 20 times higher than the frequency being detected. The
highest frequency that needs to be detected is the upper bound of C5. This means
that sampling must occur at a rate of at least 10520Hz to meet this objective for
all desired notes.

3 Procedure

3.1 Simulation and Calculations

The circuit design was based around Figure 1 from page 1 of the microphone
amplifier documentation provided [2]. Hand calculations were done based on the
information given in the datasheets for the microphone and the amplifier to be
used in the project to find:

• The maximum AC current produced by the microphone.

3

• The input voltage that this would feed into the amplifier.

• The gain necessary to achieve the goal of having at least 1V AC swing when
the microphone was picking up a noise.

• The value of the gain controlling resistor (R4 in Figure 1) necessary to
achieve the desired gain.

Figure 1: Non-inverting Microphone Amplifier Circuit Example from Texas Instru-
ments

The circuit proposed based on these calculations was simulated in LTSpice using
the following model shown in Figure 2. The PSpice model for the amplifier was
downloaded from the manufacturer’s website and modified to work in LTSpice. [3]

4

Figure 2: TLV6741 Amplifer LTSpice Simulation

To simulate the circuit, a sweep command was used to define the AC signal coming
from the current source, I2, which represented the microphone. The microphone
was represented with two current sources and a resistor for the internal resistance
of the microphone. One current source, I1, represented the DC signal and the
other current source, I2, represented the AC signal. Through these simulations,
the gain of the amplifier was graphed to visualize what the amplifier was doing at
the various frequencies being tested. The transient option was also used to model
the output voltage at different frequencies.

These simulations were used to ensure that the gain of the amplifier would be close
to constant in the frequency range relevant to this project (262Hz to 523Hz), and
to adjust the resistor used to control the gain in order to both amplify the signal
enough such that the output has at least 1V of amplitude per the specifications,
however not so much that the peaks of the wave are clamped due to the 0V to 5V
range of the power supplied to the amplifier. These simulations started using the
value found in the hand calculations, and then used to check resistance values that
would be reasonable to create with the resistors available. Through calculations,
R7 was calculated to be 74Ω.

3.2 Construction and Verification

The testing of the physical circuit may be disentangled from the testing of the
code if access to an oscilloscope is available, however for this project it was not.
Additionally, if necessary to debug the code without concern over the
predictability of the physical circuit’s output, sample data could be generated
using MATLAB to ensure the code works before using it to test the physical
circuit. This project tested both pieces in tandem, so the following Coding section
happened in parallel with the AC verification of the circuit.

The circuit planned using the LTSpice simulation and hand calculations was first
drafted into the schematic shown in Figure 3. The circuit was initially built on a

5

breadboard for easier troubleshooting and modifications. The DC operating bias of
the input and output of the circuit was verified using a DMM. 2.5V is the ideal
bias point to see the maximum amount of both the upper and lower parts of the
resulting AC output, as it is halfway between 0V and 5V. Due to lack of access to
an oscilloscope, the AC operation of the circuit had to be checked using the
Arduino Nano and MATLAB code to take and parse through the data. The
method of collection and evaluation is discussed further in the corresponding code
section.

This circuit was first tested using input from a phone’s audio cable to minimize
complications from the microphone in the initial testing. A 3.5 mm audio cable
was cut in half and the ground placed where the ground of the microphone is in
Figure 3 and one of the stereo wires was placed where the positive side of the
microphone is in the schematic. The cable was then plugged in to a phone and a
tone played to produce the sine wave at the desired frequency as seen in Figure 4.
The output from this test was recorded using an Arduino Uno with the code
shown in Appendix section 6.1, and analyzed using the MATLAB code shown in
Appendix section 6.2.

6

Figure 3: Detailed schematic of audio detection circuit

7

Figure 4: Amplifier and FFT Testing Setup

Once the verification of the circuit was completed, the circuit was then constructed
more robustly by soldering components on to test pads such that there would be
no concern of bumping components out of place as there is with a breadboard.
Verification was then confirmed to match the previous breadboard circuit as
MATLAB graphs were produced, to ensure the construction was completed
correctly.

3.3 Coding

In order to achieve the desired sampling frequency of at least 10520Hz, the
Arduino code needed to sample efficiently. In the pursuit of a very high sampling
frequency, the Arduino code used an ISR (interrupt service routine) and the
prescaler was set to 1

8
th using register programming in the set up of the Arduino

script. This allowed the Arduino to move on to the next sample as soon as each
analog to digital conversion was done.

MATLAB code was separated into two separate programs, one of which takes one
set of measurements and is used to produce graphs and calculate the SNR, and
one of which runs a loop in order to allow the device to update the LED’s. The
Fourier transform is done in MATLAB using MATLAB’s FFT (fast Fourier
transform) function, as is determining the specific frequency being played. The if
statement which determines which if any of the notes from middle C to high C are
detected was written with at least enough tolerance to detect all frequencies inside
the +/-0.5% range for each note, as described in Table 1 in the Background
section. This code can be found in the Appendix section 6.3.

The Signal to Noise Ratio (SNR) was done using the MATLAB SNR function for
real sinusoids. This allows a number of harmonics of the detected frequency to also
be ignored for the purposes of the SNR. Additionally, it means that it is not
necessary to know in advance what the input frequency will be, as the function

8

already picks out the most prevalent frequency as the signal. For an accurate
measurement using this function, it is necessary that the sound inputted is
sinusoidal. Sinusoidal input from an online tone generator was used to test the
SNR of the system.

3.4 Final Product

Figure 5 shows the block diagram of the construction of the finished product. Note
that the output produced by the output filter is not used, however it was left in
the schematic to ensure that should it be necessary to filter out any low sounds not
in the desired testing range. Not pictured is the USB connection from the Arduino
to a serial port of a PC running the associated MATLAB script.

9

Figure 5: Block Diagram of Audio Detection Circuit

10

4 Results

4.1 Simulation and Calculations

The following hand calculations were done to find the appropriate resistor values
needed to get an appropriate gain using the materials available.

1. Mic Sensitivity in V/Pa
10−42/20 = 7.94mv/Pa

2. V/Pa to A/Pa
(7.94mV/Pa)/(2.2kΩ) = 3.61µA/Pa

3. Maximum Possible current
3.61µA ∗ 2Pa = 7.22µA

4. Desired value of R1

(VCC − Vmic)/(Imic) = (5− 2)/0.5 = 6000Ω ≈ 5.9kΩ

5. DC Input Voltage Bias point
R2 = R3 = 200kΩ

6. AC Input Voltage
Rin = R1||Req = R1||(R2||R3) = 5571.29Ω
Vin = Imax ∗Rin = 7.22µA ∗ 5571.29Ω = 40.2mV

7. Desired Gain
Gain = Voutmax/Vin = 5V/40.2mV = 119V/V

8. Value of R4

R4 = R5/(Gain− 1) = 10kΩ/118 = 84Ω ≈ 73Ω ≈ 220||220||220

The graph in Figure 6 shows the gain expected at various frequencies using the
resistor value closest to the hand calculated value that would be possible to create.
When zoomed in to the range of frequencies that are being tested for (260Hz to
526Hz), the gain of the circuit is fairly constant with a difference of 0.00113 from
the lowest to highest frequency. Having a steady gain ensures that the difference
between Vin and Vout remains stable and does not damage the Arduino, should the
amplifier be powered by a source other than the Arduino.

11

Figure 6: AC Simulation Gain Frequency Sweep

Figure 7: AC Simulation Gain Frequency Sweep (100Hz-1000Hz)

4.2 Construction and Verification

The DC bias points of the input and output of the amplifier were verified using a
DMM. Small variance is possible due to the tolerances of resistors R2, R3, R4, and
R5, shown in Figure 5 as the voltage divider creating the input DC bias point.
The results of this test are reported in Table 2.

Table 2: Ideal and Measured DC Voltage bias at the input and output of the am-
plifier.

Node Ideal DC Voltage (V) Measured DC Voltage (V)
Amplifier Pin 3 (Vin) 2.5 2.41
Amplifier Pin 1 (Vout) 2.5 2.20

12

These values are within the expected tolerance given component tolerances and
the variation in power supplied by the Arduino’s 5V supply. These are also far
enough from the limits of the supplied power (0V and 5V) to allow a large
waveform which is not clipped on either side.

The amplifier circuit and MATLAB signal processing were tested using a clean
signal produced by an audio cable and a phone at frequencies between 261.626Hz
(middle C) and 523.251Hz (high C). A sample graph from this test are shown in
Figure 8. The amplitude spectrum produced when run with an input of 261.626Hz
shows a tall spike at 260.7Hz, which is only 0.926Hz away from the expected value.
This suggests that the amplifier circuit and MATLAB code are successful in
determining the frequency of a relatively clean signal. Note that this graph was
produced before the Arduino code had incorporated the ISR, so the sampling time
is substantially higher.

Figure 8: MATLAB Output from audio cable clean signal test at middle C

The magnitude of the output when using the microphone, with and without sound
stimulation, was then tested using the graphs produced in MATLAB. The tones
used to generate the sound from a cell phone to test the device were found from an
online source.[4] Figure 9 shows the output of a test with no sound being played.

13

While some larger spikes are visible, the peaks are typically below the 0.2V. Figure
10 shows the output of a test with middle C being played very near the
microphone on the left and high C on the right. Figure 11 shows the output of a
test with sound being played from a source playing G at a distance of 10ft from
the microphone. Recall that the objective is for the amplitude of the AC voltage
output to be less than 0.2V of amplitude when not stimulated with an audio
source, and to be at least 1V of amplitude when stimulated with an audio source
that is 10ft from the microphone or closer.

Figure 9: MATLAB Output with no signal being played.

14

Figure 10: MATLAB Output of middle C on the left and high C on the right.

Figure 11: MATLAB Output G played from 10 feet away from microphone.

15

4.3 Coding

The finished Arduino code used in the project can be found in Appendix section
6.1. The Arduino code’s internal timer reported the time taken to collect all 10500
samples in each run to MATLAB. Over 10 tests, whose results are shown in Table
3 the average time reported was 0.209985s, the maximum time reported was
0.209996s, and the minimum time reported was 0.209972s. Recall that in order to
meet the objective of sampling at a rate of at least 20 times the highest frequency
in the desired range the sample rate needed to be at minimum 10520Hz. The
lowest sampling frequency measured in the 10 tests recorded for this purpose was
10500/0.209996 = 50001Hz, which is nearly 5x the 10520Hz minimum.

Table 3: Sampling Time and Frequency Reported in MATLAB

Test Sample Time (s/10500 samples) Sampling Frequency (Hz)
1 0.209972 50007
2 0.209984 50004
3 0.209984 50004
4 0.209996 50001
5 0.209980 50005
6 0.209988 50003
7 0.209980 50005
8 0.209992 50002
9 0.209984 50004
10 0.209988 50003

Average 0.209985 50004

The MATLAB code used for testing and creating graphs for the project can be
found in Appendix section 6.2. To ensure that the Fourier Transform used in
MATLAB was correctly converting the time domain signal into a frequency
spectrum, the MATLAB code was set up to output both the generated frequency
spectrum and the time domain voltage as graphs. The major frequencies detected
according to the frequency spectrum were visually checked to match the
component frequencies seen in the time domain graph. Figure 8 shows an example
of the graphs used to check this, with the frequency of the largest sine wave
estimated from the middle graph being approximately equal to 261Hz.

Once the calculations in MATLAB were determined to be accurately detecting the
desired frequency, a modified copy of the testing code, found in Appendix section
6.3 was created which allowed MATLAB to run the calculations repeatedly and
communicate the results back to the Arduino. This was used to run and test the
operation of the LED indicators as a method of communicating the results.

4.4 Final Product

Figure 12 shows the completed circuit built on a protoboard to minimize potential
for the circuit to have loose connections. All of the components were transferred
and soldered from the breadboard to the protoboard.

16

Figure 12: Final Circuit on Protoboard

The LED (looping) version of the created code was used to test the range of the

17

circuit, which was confirmed to successfully detect all 8 desired notes, as well as
silence, from up to 10ft away. The demo video at
https://media.oregonstate.edu/media/t/1_n8bh8kyv shows the circuit
running with the audio source 10ft away in the background. All 8 notes are shown
being detected, as well as silence before and after moving through the notes.

The signal to noise ratio was computed using a sinusoidal tone produced by a
phone as input. Figure 13 shows a sample SNR result in MATLAB for high C
input. The SNR value is listed below the voltage and power graphs with the
corresponding frequency read below. This was considered a success, as the target
SNR was 20dB or more, and we achieved an SNR of 22dB.

Figure 13: SNR MATLAB Value

5 Conclusion
When working with limited resources for testing, using alternative strategies for
troubleshooting is essential. The strategies of creating multiple physical circuits in
order to check whether unexpected results in the code would be matching

18

https://media.oregonstate.edu/media/t/1_n8bh8kyv

(suggesting a coding error) or separate (suggesting a construction error) was
essential in troubleshooting the circuit without access to an oscilloscope.
Additionally, careful modeling using LTSpice became even more essential to ensure
that the design of the circuit was good before constructing and testing the physical
circuit. Knowing what results to expect in a correctly assembled circuit helped to
troubleshoot the circuit.

The scope of this project ranged from hand calculating component values,
simulating designs, writing code for reading values, building the circuit, and
troubleshooting and documenting. A lot of factors that seemed simple on paper
turned out to be more complicated than expected. The simulation and actual
results were different due to many factors such as tolerance and imperfect
simulation models. As such, there were modifications that needed to be made from
the real circuit from the simulated one.

Another issue that came up was that in an attempt to reduce problems from the
microphone, more problems arose. The cable that was used to transfer the signal
directly to the circuit from the phone caused a constant 60Hz noise– disrupting the
signal that was trying to be read. It is likely that this was electromagnetic
interference caused by the circuit being surrounded by other devices and circuits in
the house that were all on 60Hz signals. This was able to be resolved by shortening
wires wherever possible, and moving the circuit to an area with less active
electronics. Overall, each part of the process was necessary to ensuring the final
product worked well, as well as reducing the scope of troubleshooting necessary.

19

6 Appendix

6.1 Arduino Sample Collection Code
1 /*
2 This program waits for an input in the serial monotor then prints

the next 10500 values captred by the arduino to the serial port.
It also passes the time it took to collect all the samples the

time it took to gather thoes samples to the serial port.
3 Trevor Horine
4 11/6/2020
5 */
6

7 //Pin assinments and global varables
8 const int analogInPin = A0; // Analog input pin that is used as

input form amplifier
9 int sensorValue = 0; // value read from the output of

amplifier
10 const int MAX_SAMPLES = 10500; // number of samples collected before

sending
11 int last;
12

13 void setup() {
14 Serial.begin (230400); // initialize serial communications at

230400 baud rate
15 pinMode(LED_BUILTIN , OUTPUT); //built in led
16 digitalWrite(LED_BUILTIN , HIGH);
17 }
18

19 void loop() {
20 int values = MAX_SAMPLES +100;
21 digitalWrite(LED_BUILTIN , HIGH);
22 while (!(Serial.available () > 0)){ //while nothing in serial port

(waiting for matlab to reach out)
23 Serial.read();
24 values = 0;
25 last = true;
26 }
27 digitalWrite(LED_BUILTIN , LOW);//when found something in serial

port (matlab has reached out)
28 delay (10);
29 long before = micros (); // current time in microseconds before

collecting data
30 while(values < MAX_SAMPLES) { //while less then desired number of

samples has been printed to the serial port
31 // read the analog in value form amplifier
32 sensorValue = analogRead(analogInPin);
33 byte buf [2]; // split in to bytes
34 buf [0] = sensorValue & 255;
35 buf [1] = (sensorValue >> 8) & 255;
36 Serial.write(buf , sizeof(buf)); // write to serial port
37 values ++;
38 }
39 if (last) {
40 long diff = micros ()-before;// calculate and write time it took

to get samples to serial port
41 byte buf [4];
42 buf [0] = diff & 255;

20

43 buf [1] = (diff >> 8) & 255;
44 buf [2] = (diff >> 16) & 255;
45 buf [3] = (diff >> 24) & 255;
46 Serial.write(buf , sizeof(buf));
47 last = false;
48 }
49 }

21

6.2 Matlab FFT and Graphing Single Set of Data
1 %This program will open a serial port , then send a signal to an

Arduino. It
2 %will then read in a set number of samples and how long it took to

collect
3 %them. The arduino ADC values will then be converted to voltages.

The
4 %captured signal will be graphed and run through the MATLAB FFT to
5 %determine the frequancy of the signal. The Single -Sided Amplitude

Spectrum
6 %is graphed and the highest frequancy in the range between 250 and

540 is
7 %reported to the command window.
8 %Trevor Horine
9 %11/6/2020

10

11 %start with a clean workspace
12 clear
13

14 %Number of samples
15 numSamples = 10500;
16

17

18 %open serial port set this to what port the Arduino is conected to
19 device = serialport ("COM6 " ,500000);
20 configureTerminator(device ,"CR/LF")
21 %create empty vector to add values of the signal to
22 y = 0:0:0;
23 %read in line specified number (50) times from serial port
24 pause (5);
25 write(device ," getval","string ");
26 %read in samples from Arduino
27 tic;
28 num = read(device ,numSamples ,"uint8")
29 toc
30 %read in time to collect samples from Arduino
31 timeIn = read(device ,1," uint32 ");
32 %convert time to seconds from micro seconds
33 captureSeconds = timeIn /1000000;
34 %print time to capture samples
35 fprintf (" Capture Time: %f\n",captureSeconds);
36 %time per sample in seconds
37 sampleTime = captureSeconds/numSamples;
38 %create time vector to graph signal against
39 %x is the vector of the x-axis and has increments of time that
40 x = 0: sampleTime:captureSeconds -sampleTime;
41 %for loop to covert from ADC value and place it in the vector
42 for i = 0:numSamples -1
43 %num is the string that is read in from the serial port
44 curnum = num(i+1);
45 %add it to the end of the y vector
46 y(end +1) = (curnum *5) /256;
47 end
48 %release the serial port so it can be used by something else
49 %clear device
50 %create figure with a 1x3 array of graphs
51 figure
52 %plot the graph using the x and y vectors

22

53 %plot the whole signal
54 subplot (3,1,1)
55 plot(x,y)
56 %title graph and axes
57 title(’Mic voltage ’)
58 xlabel(’Time (seconds)’)
59 ylabel(’Voltage (Volts)’)
60 %range of axis
61 xlim ([0 1.05])
62 ylim ([0 5])
63

64 %plot small section of signal so can see the period (might not line
up with

65 %the window perficly , if not pan up or down)
66 subplot (3,1,2)
67 plot(x,y)
68 %title graph and axes
69 title(’Mic voltage ’)
70 xlabel(’Time (seconds)’)
71 ylabel(’Voltage (Volts)’)
72 %range of axis
73 xlim ([.1 .2])
74 ylim ([2 4.5])
75

76 %MATLAB FFT
77 Fs = numSamples/captureSeconds; % Sampling frequency
78 T = 1/Fs; % Sampling period
79 L = numSamples; % Length of signal (in milliseconds)
80 t = (0:L-1)*T; % Time vector
81 Y = fft(y);
82 P2 = abs(Y/L);
83 P1 = P2(1: floor(L/2+1));
84 P1(2:end -1) = 2*P1(2:end -1);
85 %0.74074074074074 is weird factor that we found in testing , dont

know where
86 %it came from but the FFT is off by this factor every time.
87 f = Fs *(0:(L/2))/L;
88 %f = (1/ captureSeconds)*Fs *(0:(L/2))/L;
89

90 %SNR computation:
91 r = snr(y,Fs ,3); %outputs snr in decibles , ignoring the first 3

harmonics
92 fprintf (" Signal to Noise Ratio %f\n", r)
93

94

95 %plot the Single -Sided Amplitude Spectrum (intensity at difrent
frequancies)

96 subplot (3,1,3);
97 plot(f,P1)
98 title(’Single -Sided Amplitude Spectrum of X(t)’)
99 xlabel(’f (Hz)’)

100 ylabel(’|P1(f)|’)
101 xlim ([200 600])
102 ylim ([0 .075])
103

104 %find maximum value in the intensity vector from the FFT and it’s
index

105 %ignore anything that is not between 250 ish to 530ish

23

106 b = P1 (53:120);
107 [maximum , maxindex] = max(b);
108 %if maximum is really small , liklely no signal
109 feq = round(f(maxindex +52));
110 if maximum < .001
111 fprintf ("No Signal\n")
112 write(device , "N", "string ");
113 %print the freqancy of signal
114 else
115 fprintf (" Highest frequancy is %i\n", feq)
116 if feq >= 260 && feq <= 263
117 write(device , "MC","string ");
118 end
119 if feq >= 292 && feq <= 295
120 write(device , "D","string ");
121 end
122 if feq >= 327 && feq <= 331
123 write(device , "E","string ");
124 end
125 if feq >= 347 && feq <= 351
126 write(device , "F","string ");
127 end
128 if feq >= 390 && feq <= 394
129 write(device , "G","string ");
130 end
131 if feq >= 437 && feq <= 442
132 write(device , "A","string ");
133 end
134 if feq >= 491 && feq <= 496
135 write(device , "B","string ");
136 end
137 if feq >= 520 && feq <= 526
138 write(device , "HC","string ");
139 end
140 end
141 %clear workspace when done
142 clear device

24

6.3 Matlab Repeated Calculations and LED
Communication

1 %This program will open a serial port , then send a signal to an
Arduino. It

2 %will then read in a set number of samples and how long it took to
collect

3 %them. The arduino ADC values will then be converted to voltages.
The

4 %captured signal will be graphed and run through the MATLAB FFT to
5 %determine the frequancy of the signal. The Single -Sided Amplitude

Spectrum
6 %is graphed and the highest frequancy in the range between 250 and

540 is
7 %reported to the command window.
8 %Trevor Horine
9 %11/6/2020

10

11 %start with a clean workspace
12 clear
13

14 %Number of samples
15 numSamples = 10500;
16 %open serial port set this to what port the Arduino is conected to
17 device = serialport ("COM6 " ,500000);
18 configureTerminator(device ,"CR/LF")
19

20 while 1
21 pause (2);
22 %create empty vector to add values of the signal to
23 y = 0:0:0;
24 write(device ," getval","string ");
25 %read in samples from Arduino
26 tic;
27 num = read(device ,numSamples ,"uint8");
28 toc
29 %read in time to collect samples from Arduino
30 timeIn = read(device ,1," uint32 ");
31 %convert time to seconds from micro seconds
32 captureSeconds = timeIn /1000000;
33 %print time to capture samples
34 fprintf (" Capture Time: %f\n",captureSeconds);
35 %time per sample in seconds
36 sampleTime = captureSeconds/numSamples;
37 %create time vector to graph signal against
38 %x is the vector of the x-axis and has increments of time that
39 x = 0: sampleTime:captureSeconds -sampleTime;
40 %for loop to covert from ADC value and place it in the vector
41 for i = 0:numSamples -1
42 %num is the string that is read in from the serial port
43 curnum = num(i+1);
44 %add it to the end of the y vector
45 y(end +1) = (curnum *5) /256;
46 end
47 %release the serial port so it can be used by something else
48 %clear device
49 %create figure with a 1x3 array of graphs
50 % figure

25

51 % %plot the graph using the x and y vectors
52 % %plot the whole signal
53 % subplot (3,1,1)
54 % plot(x,y)
55 % %title graph and axes
56 % title(’Mic voltage ’)
57 % xlabel(’Time (seconds)’)
58 % ylabel(’Voltage (Volts)’)
59 % %range of axis
60 % xlim ([0 1.05])
61 % ylim ([0 5])
62 %
63 % %plot small section of signal so can see the period (might

not line up with
64 % %the window perficly , if not pan up or down)
65 % subplot (3,1,2)
66 % plot(x,y)
67 % %title graph and axes
68 % title(’Mic voltage ’)
69 % xlabel(’Time (seconds)’)
70 % ylabel(’Voltage (Volts)’)
71 % %range of axis
72 % xlim ([.1 .2])
73 % ylim ([2 4.5])
74

75 %MATLAB FFT
76 Fs = numSamples/captureSeconds; % Sampling frequency
77 T = 1/Fs; % Sampling period
78 L = numSamples; % Length of signal (in milliseconds

)
79 t = (0:L-1)*T; % Time vector
80 Y = fft(y);
81 P2 = abs(Y/L);
82 P1 = P2(1: floor(L/2+1));
83 P1(2:end -1) = 2*P1(2:end -1);
84 %0.74074074074074 is weird factor that we found in testing ,

dont know where
85 %it came from but the FFT is off by this factor every time.
86 f = Fs *(0:(L/2))/L;
87 %f = (1/ captureSeconds)*Fs *(0:(L/2))/L;
88

89 %plot the Single -Sided Amplitude Spectrum (intensity at difrent
frequancies)

90 % subplot (3,1,3);
91 % plot(f,P1)
92 % title(’Single -Sided Amplitude Spectrum of X(t) ’)
93 % xlabel(’f (Hz) ’)
94 % ylabel(’|P1(f)|’)
95 % xlim ([200 600])
96 % ylim ([0 .075])
97

98 %find maximum value in the intensity vector from the FFT and it
’s index

99 %ignore anything that is not between 250 ish to 530ish
100 b = P1 (50:120);
101 [maximum , maxindex] = max(b);
102 feq = round(f(maxindex +49));
103 %if maximum is really small , liklely no signal

26

104 if maximum < .001
105 fprintf ("No Signal\n")
106 write(device , "N", "string ");
107 %print the freqancy of signal
108 else
109 fprintf (" Highest frequancy is %i\n", feq)
110 if feq >= 260 && feq <= 263
111 write(device , "MC","string ");
112 end
113 if feq >= 292 && feq <= 295
114 write(device , "D","string ");
115 end
116 if feq >= 327 && feq <= 331
117 write(device , "E","string ");
118 end
119 if feq >= 347 && feq <= 351
120 write(device , "F","string ");
121 end
122 if feq >= 390 && feq <= 394
123 write(device , "G","string ");
124 end
125 if feq >= 437 && feq <= 442
126 write(device , "A","string ");
127 end
128 if feq >= 491 && feq <= 496
129 write(device , "B","string ");
130 end
131 if feq >= 520 && feq <= 526
132 write(device , "HC","string ");
133 end
134 end
135 end
136 %clear device when done
137 clear device

27

Part Value Package Description

ARDUINO ARDUINO-NANO-3.0 ARDUINO-NANO-3.0 Arduino Nano 3.0

C1 330n Through Hole CAPACITOR

C2 47u Through Hole CAPACITOR

C3 120p Through Hole CAPACITOR

C4 1u Through Hole CAPACITOR

C5 1u Through Hole CAPACITOR

C6 1u Through Hole CAPACITOR

LED1 LED3MM LED

LED2 LED3MM LED

LED3 LED3MM LED

LED4 LED3MM LED

LED5 LED3MM LED

LED6 LED3MM LED

LED7 LED3MM LED

LED8 LED3MM LED

LMC6032 DIL08 OP AMP

M1 ELECTRET_MICROPHONE CMC-5042PF-AC Electret Condenser Microphone

R1 5.9k Through Hole RESISTOR

R2 100k Through Hole RESISTOR

R3 100k Through Hole RESISTOR

R4 100k Through Hole RESISTOR

R5 100k Through Hole RESISTOR

R6 10k Through Hole RESISTOR

R7 10k Through Hole RESISTOR

R8 220 Through Hole RESISTOR

R9 220 Through Hole RESISTOR

R10 220 Through Hole RESISTOR

R11 1k Through Hole RESISTOR

R12 1k Through Hole RESISTOR

R13 1k Through Hole RESISTOR

R14 1k Through Hole RESISTOR

R15 1k Through Hole RESISTOR

R16 1k Through Hole RESISTOR

R17 1k Through Hole RESISTOR

R18 1k Through Hole RESISTOR

6.4 Bill of Materials

28

References
[1] N.A. Piano key frequencies. url:

https://en.wikipedia.org/wiki/Piano_key_frequencies. (accessed
11.03.2020).

[2] N.A. Non-inverting microphone pre-amplifier circuit. url:
https://www.ti.com/lit/pdf/sboa290. (accessed 10.22.1010).

[3] N.A. SIMULATION MODEL TLV6741DCKT TINA-TI Spice Model (Rev.
A). url: https://www.ti.com/product/TLV6741. (accessed 10.29.2020).

[4] N.A. Online Tone Generator. url:
https://www.szynalski.com/tone-generator/.

29

https://en.wikipedia.org/wiki/Piano_key_frequencies
https://www.ti.com/lit/pdf/sboa290
https://www.ti.com/product/TLV6741
https://www.szynalski.com/tone-generator/

	Introduction
	Background
	Procedure
	Simulation and Calculations
	Construction and Verification
	Coding
	Final Product

	Results
	Simulation and Calculations
	Construction and Verification
	Coding
	Final Product

	Conclusion
	Appendix
	Arduino Sample Collection Code
	Matlab FFT and Graphing Single Set of Data
	Matlab Repeated Calculations and LED Communication
	Bill of Materials

	References

